

Laravel

#laravel

Table of Contents

About 1

Chapter 1: Getting started with Laravel 2

Remarks 2

Laravel StackOverflow Slack Community 2

Featured Tutorial 2

Contribution Guidelines 2

Contribution Style Guide 2

About Laravel 2

Main Features 2

MVC 2

Blade Templating Engine 3

Routing & Middleware 3

Artisan 3

Eloquent ORM 3

Event Handling 3

Versions 3

Examples 4

Welcome to Laravel tag documentation! 4

Starter Guide 4

Getting Started 4

Laravel Views 5

Chapter 2: Artisan 6

Syntax 6

Parameters 6

Examples 8

Introduction 8

List all registered routes filtered by multiple methods 8

Running Laravel Artisan commands using PHP code 9

Creating and registering new artisan command 9

Chapter 3: Authentication 10

Examples 10

Multi Authentication 10

Chapter 4: Authorization 14

Introduction 14

Examples 14

Using Gates 14

Authorizing Actions with Gates 14

Policies 15

Writing Policies 15

Authorizing Actions with Policies 15

Chapter 5: Blade Templates 17

Introduction 17

Examples 17

Views: Introduction 17

Control Structures 18

Conditionals 18

'If' statements 18

'Unless' statements 18

Loops 18

'While' loop 19

'Foreach' loop 19

'Forelse' Loop 19

Echoing PHP expressions 20

Echoing a variable 20

Echoing an element in an array 20

Echoing an object property 21

Echoing the result of a function call 21

Checking for Existence 21

Raw echos 21

Including Partial Views 21

Layout Inheritance 22

Sharing data to all views 24

Using View::share 24

Using View::composer 24

Closure-based composer 24

Class-based composer 24

Execute arbitrary PHP code 25

Chapter 6: Cashier 26

Remarks 26

Examples 26

Stripe Setup 26

Chapter 7: Change default routing behaviour in Laravel 5.2.31 + 28

Syntax 28

Parameters 28

Remarks 28

Examples 28

Adding api-routes with other middleware and keep default web middleware 28

Chapter 8: Collections 30

Syntax 30

Remarks 30

Examples 30

Creating Collections 30

where() 30

Nesting 30

Additions 31

Using Get to lookup value or return default 31

Using Contains to check if a collection satisfies certain condition 32

Using Pluck to extract certain values from a collection 32

Using Map to manipulate each element in a collection 33

Using sum, avg, min or max on a collection for statistical calculations 33

Sorting a collection 33

Sort() 33

SortBy() 34

SortByDesc() 35

Using reduce() 35

Using macro() to extend collections 36

Using Array Syntax 37

Chapter 9: Common Issues & Quick Fixes 39

Introduction 39

Examples 39

TokenMisMatch Exception 39

Chapter 10: Constants 40

Examples 40

Example 40

Chapter 11: Controllers 41

Introduction 41

Examples 41

Basic Controllers 41

Controller Middleware 41

Resource Controller 42

Example of how a Resource Controller look 42

Actions Handled By Resource Controller 44

Chapter 12: Cron basics 45

Introduction 45

Examples 45

Create Cron Job 45

Chapter 13: Cross Domain Request 46

Examples 46

Introduction 46

CorsHeaders 46

Chapter 14: Custom Helper function 48

Introduction 48

Remarks 48

Examples 48

document.php 48

HelpersServiceProvider.php 48

Use 49

Chapter 15: CustomException class in Laravel 50

Introduction 50

Examples 50

CustomException class in laravel 50

Chapter 16: Database 51

Examples 51

Multiple database connections 51

Chapter 17: Database Migrations 55

Examples 55

Migrations 55

The migration files 56

Generating migration files 56

Inside a database migration 57

Running migrations 58

Rolling Back Migrations 58

Chapter 18: Database Seeding 60

Examples 60

Running a Seeder 60

Creating a Seed 60

Inserting Data using a Seeder 60

Inserting data with a Model Factory 61

Seeding with MySQL Dump 61

Using faker And ModelFactories to generate Seeds 62

Chapter 19: Deploy Laravel 5 App on Shared Hosting on Linux Server 65

Remarks 65

Examples 65

Laravel 5 App on Shared Hosting on Linux Server 65

Chapter 20: Directory Structure 68

Examples 68

Change default app directory 68

Override Application class 68

Calling the new class 68

Composer 69

Change the Controllers directory 69

Chapter 21: Eloquent 70

Introduction 70

Remarks 70

Examples 70

Introduction 70

Sub-topic Navigation 71

Persisting 71

Deleting 72

Soft Deleting 73

Change primary key and timestamps 74

Throw 404 if entity not found 75

Cloning Models 75

Chapter 22: Eloquent : Relationship 76

Examples 76

Querying on relationships 76

Inserting Related Models 76

Introduction 77

Relationship Types 77

One to Many 77

One to One 78

How to associate between two models (example: User and Phone model) 78

Explanation 79

Many to Many 79

Polymorphic 80

Many To Many 82

Chapter 23: Eloquent: Accessors & Mutators 85

Introduction 85

Syntax 85

Examples 85

Defining An Accessors 85

Getting Accessor: 85

Defining a Mutator 86

Chapter 24: Eloquent: Model 87

Examples 87

Making a Model 87

Model creation 87

Model File Location 88

Model configuration 89

Update an existing model 90

Chapter 25: Error Handling 91

Remarks 91

Examples 91

Send Error report email 91

Catching application wide ModelNotFoundException 92

Chapter 26: Events and Listeners 93

Examples 93

Using Event and Listeners for sending emails to a new registered user 93

Chapter 27: Filesystem / Cloud Storage 95

Examples 95

Configuration 95

Basic Usage 95

Custom Filesystems 97

Creating symbolic link in a web server using SSH 98

Chapter 28: Form Request(s) 99

Introduction 99

Syntax 99

Remarks 99

Examples 99

Creating Requests 99

Using Form Request 99

Handling Redirects after Validation 100

Chapter 29: Getting started with laravel-5.3 102

Remarks 102

Examples 102

Installing Laravel 102

Via Laravel Installer 102

Via Composer Create-Project 103

Setup 103

Server Requirements 103

Local Development Server 104

Hello World Example (Basic) and with using a view 104

Hello World Example (Basic) 105

Web Server Configuration for Pretty URLs 105

Chapter 30: Helpers 107

Introduction 107

Examples 107

Array methods 107

String methods 107

Path mehods 107

Urls 108

Chapter 31: HTML and Form Builder 109

Examples 109

Installation 109

Chapter 32: Installation 110

Examples 110

Installation 110

Via Composer 110

Via the Laravel installer 110

Running the application 111

Using a different server 111

Requirements 112

Hello World Example (Using Controller and View) 113

Hello World Example (Basic) 114

Installation using LaraDock (Laravel Homestead for Docker) 114

Installation 114

Basic Usage 115

Chapter 33: Installation Guide 116

Remarks 116

Examples 116

Installation 116

Hello World Example (Basic) 117

Hello World Example With Views and Controller 117

The view 117

The controller 117

The router 118

Chapter 34: Introduction to laravel-5.2 119

Introduction 119

Remarks 119

Examples 119

Installation or Setup 119

Install Laravel 5.1 Framework on Ubuntu 16.04, 14.04 & LinuxMint 119

Chapter 35: Introduction to laravel-5.3 123

Introduction 123

Examples 123

The $loop variable 123

Chapter 36: Laravel Docker 124

Introduction 124

Examples 124

Using Laradock 124

Chapter 37: Laravel Packages 125

Examples 125

laravel-ide-helper 125

laravel-datatables 125

Intervention Image 125

Laravel generator 125

Laravel Socialite 125

Official Packages 125

Cashier 125

Envoy 126

Passport 126

Scout 126

Socialite 126

Chapter 38: lumen framework 127

Examples 127

Getting started with Lumen 127

Chapter 39: Macros In Eloquent Relationship 128

Introduction 128

Examples 128

We can fetch one instance of hasMany relationship 128

Chapter 40: Mail 129

Examples 129

Basic example 129

Chapter 41: Middleware 130

Introduction 130

Remarks 130

Examples 130

Defining a Middleware 130

Before vs. After Middleware 131

Route Middleware 131

Chapter 42: Multiple DB Connections in Laravel 133

Examples 133

Initial Steps 133

Using Schema builder 133

Using DB query builder 134

Using Eloquent 134

From Laravel Documentation 134

Chapter 43: Naming Files when uploading with Laravel on Windows 136

Parameters 136

Examples 136

Generating timestamped file names for files uploaded by users. 136

Chapter 44: Observer 138

Examples 138

Creating an observer 138

Chapter 45: Pagination 140

Examples 140

Pagination in Laravel 140

Changing pagination views 141

Chapter 46: Permissions for storage 142

Introduction 142

Examples 142

Example 142

Chapter 47: Policies 143

Examples 143

Creating Policies 143

Chapter 48: Queues 144

Introduction 144

Examples 144

Use-cases 144

Queue Driver Configuration 144

sync 144

database 144

sqs 144

iron 145

redis 145

beanstalkd 145

null 145

Chapter 49: Remove public from URL in laravel 146

Introduction 146

Examples 146

How to do that? 146

Remove the public from url 146

Chapter 50: Requests 147

Examples 147

Getting input 147

Chapter 51: Requests 148

Examples 148

Obtain an Instance of HTTP Request 148

Request Instance with other Parameters from routes in controller method 148

Chapter 52: Route Model Binding 150

Examples 150

Implicit Binding 150

Explicit Binding 150

Chapter 53: Routing 152

Examples 152

Basic Routing 152

Routes pointing to a Controller method 152

A route for multiple verbs 152

Route Groups 153

Named Route 153

Generate URL using named route 153

Route Parameters 154

Optional Parameter 154

Required Parameter 154

Accessing the parameter in controller 154

Catch all routes 154

Catching all routes except already defined 154

Routes are matched in the order they are declared 155

Case-insensitive routes 155

Chapter 54: Seeding 157

Remarks 157

Examples 157

Inserting data 157

Using the DB Facade 157

Via Instantiating a Model 157

Using the create method 157

Using factory 158

Seeding && deleting old data and reseting auto-increment 158

Calling other seeders 158

Creating a Seeder 158

Safe reseeding 159

Chapter 55: Services 161

Examples 161

Introduction 161

Chapter 56: Services 166

Examples 166

Binding an Interface To Implementation 166

Binding an Instance 166

Binding a Singleton to the Service Container 166

Introduction 167

Using the Service Container as a Dependency Injection Container 167

Chapter 57: Socialite 168

Examples 168

Installation 168

Configuration 168

Basic Usage - Facade 168

Basic Usage - Dependency Injection 169

Socialite for API - Stateless 169

Chapter 58: Sparkpost integration with Laravel 5.4 171

Introduction 171

Examples 171

SAMPLE .env file data 171

Chapter 59: Task Scheduling 172

Examples 172

Creating a task 172

Making a task available 173

Scheduling your task 174

Setting the scheduler to run 174

Chapter 60: Testing 176

Examples 176

Introduction 176

Test without middleware and with a fresh database 176

Database transactions for mutliple database connection 177

Testing setup, using in memory database 177

Configuration 178

Chapter 61: Token Mismatch Error in AJAX 179

Introduction 179

Examples 179

Setup Token on Header 179

Set token on tag 179

Check session storage path & permission 179

Use _token field on Ajax 180

Chapter 62: use fields aliases in Eloquent 181

Chapter 63: Useful links 182

Introduction 182

Examples 182

Laravel Ecosystem 182

Education 182

Podcasts 182

Chapter 64: Valet 183

Introduction 183

Syntax 183

Parameters 183

Remarks 183

Examples 183

Valet link 183

Valet park 184

Valet links 184

Installation 184

Valet domain 185

Installation (Linux) 185

Chapter 65: Validation 186

Parameters 186

Examples 187

Basic Example 187

Array Validation 188

Other Validation Approaches 189

Single Form Request Class for POST, PUT, PATCH 191

Error messages 192

Customizing error messages 192

Customising error messages within a Request class 193

Displaying error messages 193

Custom Validation Rules 194

Credits 196

https://riptutorial.com/ 1

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version

from: laravel

It is an unofficial and free Laravel ebook created for educational purposes. All the content is

extracted from Stack Overflow Documentation, which is written by many hardworking individuals at

Stack Overflow. It is neither affiliated with Stack Overflow nor official Laravel.

The content is released under Creative Commons BY-SA, and the list of contributors to each

chapter are provided in the credits section at the end of this book. Images may be copyright of

their respective owners unless otherwise specified. All trademarks and registered trademarks are

the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor

accurate, please send your feedback and corrections to info@zzzprojects.com

http://riptutorial.com/ebook/laravel
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

https://riptutorial.com/ 2

Chapter 1: Getting started with Laravel

Remarks

Laravel StackOverflow Slack Community

Coming soon

Featured Tutorial

Getting Started With Laravel

Contribution Guidelines

Coming soon

Contribution Style Guide

Coming soon

About Laravel

Created by Taylor Otwell as a free open-source PHP web framework, Laravel is meant to ease

and accelerate the development process of web applications with a great taste for simplicity.

It follows the model–view–controller (MVC) architectural pattern as well as the PSR-2 coding

standard, and the PSR-4 autoloading standard.

Running a Test Driven Development (TDD) in Laravel is fun and easy to implement.

Hosted on GitHub and available at https://github.com/laravel/laravel, Laravel boasts of a micro-

services architecture, making it tremendously extendable and this, with ease, with the use of

custom-made and or existing third-party packages.

Main Features

MVC

Laravel uses the MVC model, therefore there are three core-parts of the framework which work

http://www.riptutorial.com/laravel/topic/7961/installation
http://www.riptutorial.com/laravel/topic/7961/installation
https://en.wikipedia.org/wiki/Web_framework/
https://laravel.com/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md/
https://en.wikipedia.org/wiki/Test-driven_development/
https://github.com/
https://github.com/laravel/laravel
https://en.wikipedia.org/wiki/Microservices/
https://en.wikipedia.org/wiki/Microservices/

https://riptutorial.com/ 3

together: models, views and controllers. Controllers are the main part where most of the work is

done. They connect to models to get, create or update data and display the results on views,

which contain the actual HTML structure of the application.

Blade Templating Engine

Laravel is shipped with a templating engine known as Blade. Blade is quite easy to use, yet,

powerful. One feature the Blade templating engine does not share with other popular ones is her

permissiveness; allowing the use of plain PHP code in Blade templating engine files.

It is important to note that Blade templating engine files have .blade appended to file names right

before the usual .php which is nothing other than the actual file extension. As such, .blade.php is the

resulting file extension for Blade template files. Blade template engine files are stored in the

resources/views directory.

Routing & Middleware

You can define the URLs of your application with the help of routes. These routes can contain

variable data, connect to controllers or can be wrapped into middlewares. Middelware is a

mechanism for filtering HTTP requests. They can be used to interact with requests before they

reach the controllers and can thus modify or reject requests.

Artisan

Artisan is the command line tool you can use to control parts of Laravel. There are a lot of

commands available to create models, controllers and other resources needed for development.

You can also write your own commands to extend the Artisan command line tool.

Eloquent ORM

To connect your models to various types of databases, Laravel offers its own ORM with a large set

of functions to work with. The framework also provides migration and seeding and also features

rollbacks.

Event Handling

The framework is capable of handling events across the application. You can create event

listeners and event handlers that are similar to the ones from NodeJs.

Versions

Version Release Date

1.0 2011-06-09

2.0 2011-11-24

https://riptutorial.com/ 4

Version Release Date

3.0 2012-02-22

3.1 2012-03-27

3.2 2012-05-22

4.0 2013-05-28

4.1 2013-12-12

4.2 2014-06-01

5.0 2015-02-04

5.1 (LTS) 2015-06-09

5.2 2015-12-21

5.3 2016-08-24

5.4 2017-01-24

Examples

Welcome to Laravel tag documentation!

Laravel is a well-known PHP Framework. Here, you will learn all-about Laravel. Starting from as-

simple-as knowing what Object-Oriented Programming is, to the advanced Laravel package

development topic.

This, like every other Stackoverflow documentation tag, is community-driven documentation, so if

you already have experiences on Laravel, share your knowledge by add your own topics or

examples! Just don't forget to consult our Contribution style guide on this topic remarks to know

more about how to contribute and the style guide that we made to make sure we can give the best

experience towards people that want to learn more about Laravel.

More than that, we are very glad that you come, hope we can see you often here!

Starter Guide

Starter guide is custom navigation that we ordered by ourselves to make topic browsing easier

especially for beginner. This navigation is ordered by level of difficulty.

Getting Started

Installation

https://laravel.com/docs/4.2/
https://laravel.com/docs/5.0/
https://laravel.com/docs/5.1/
https://laravel.com/docs/5.2/
https://laravel.com/docs/5.3/
https://laravel.com/docs/5.4/
http://www.riptutorial.com/laravel/topic/7961/installation
http://www.riptutorial.com/laravel/topic/7961/installation

https://riptutorial.com/ 5

composer create-project --prefer-dist laravel/laravel projectname

composer create-project --prefer-dist laravel/laravel=DESIRED_VERSION projectname

composer global require "laravel/installer"

laravel new blog

Laravel Views

Blade : Introduction

Blade : Variables and Control Structures

Or

Installation from here

1. Get composer from here and install it

2. Get Wamp from here, install it and set environment variable of PHP

3. Get path to www and type command:

To install a specific Laravel version, get path to www and type command:

Or

Via Laravel Installer

First, download the Laravel installer using Composer:

Make sure to place the $HOME/.composer/vendor/bin directory (or the equivalent directory for your OS) in

your $PATH so the laravel executable can be located by your system.

Once installed, the laravel new command will create a fresh Laravel installation in the directory you

specify. For instance, laravel new blog will create a directory named blog containing a fresh Laravel

installation with all of Laravel's dependencies already installed:

Read Getting started with Laravel online: https://riptutorial.com/laravel/topic/794/getting-started-

with-laravel

http://stackoverflow.com/documentation/laravel/1251/views
http://www.riptutorial.com/laravel/topic/1407/blade-templates
https://getcomposer.org/
http://www.wampserver.com/en/
https://riptutorial.com/laravel/topic/794/getting-started-with-laravel
https://riptutorial.com/laravel/topic/794/getting-started-with-laravel

https://riptutorial.com/ 6

Chapter 2: Artisan

Syntax

• php artisan [command] [options] [arguments]

Parameters

Command Description

clear-compiled Remove the compiled class file

down Put the application into maintenance mode

env Display the current framework environment

help Displays help for a command

list Lists commands

migrate Run the database migrations

optimize Optimize the framework for better performance

serve Serve the application on the PHP development server

tinker Interact with your application

up Bring the application out of maintenance mode

app:name Set the application namespace

auth:clear-resets Flush expired password reset tokens

cache:clear Flush the application cache

cache:table Create a migration for the cache database table

config:cache Create a cache file for faster configuration loading

config:clear Remove the configuration cache file

db:seed Seed the database with records

event:generate Generate the missing events and listeners based on registration

key:generate Set the application key

https://riptutorial.com/ 7

Command Description

make:auth Scaffold basic login and registration views and routes

make:console Create a new Artisan command

make:controller Create a new controller class

make:event Create a new event class

make:job Create a new job class

make:listener Create a new event listener class

make:middleware Create a new middleware class

make:migration Create a new migration file

make:model Create a new Eloquent model class

make:policy Create a new policy class

make:provider Create a new service provider class

make:request Create a new form request class

make:seeder Create a new seeder class

make:test Create a new test class

migrate:install Create the migration repository

migrate:refresh Reset and re-run all migrations

migrate:reset Rollback all database migrations

migrate:rollback Rollback the last database migration

migrate:status Show the status of each migration

queue:failed List all of the failed queue jobs

queue:failed-table Create a migration for the failed queue jobs database table

queue:flush Flush all of the failed queue jobs

queue:forget Delete a failed queue job

queue:listen Listen to a given queue

queue:restart Restart queue worker daemons after their current job

https://riptutorial.com/ 8

php artisan list

php artisan help [command-name]

php artisan route:list --method=GET --method=POST

Examples

Introduction

Artisan is a utility that can help you do specific repetitive tasks with bash commands. It covers

many tasks, including: working with database migrations and seeding, clearing cache, creating

necessary files for Authentication setup, making new controllers, models, event classes, and a

lot more.

Artisan is the name of the command-line interface included with Laravel. It provides a

number of helpful commands for your use while developing your application.

To view a list of all available Artisan commands, you may use the list command:

To know more about the any available command, just precede its name with help keyword:

List all registered routes filtered by multiple methods

This will include all routes that accept GET and POST methods simultaneously.

queue:retry Retry a failed queue job

queue:table Create a migration for the queue jobs database table

queue:work Process the next job on a queue

route:cache Create a route cache file for faster route registration

route:clear Remove the route cache file

route:list List all registered routes

schedule:run Run the scheduled commands

session:table Create a migration for the session database table

vendor:publish Publish any publishable assets from vendor packages

view:clear Clear all compiled view files

Description Command

http://www.riptutorial.com/laravel/example/3508/migrations
http://www.riptutorial.com/laravel/topic/3272/seeding

https://riptutorial.com/ 9

Artisan::call('db:seed');

protected $commands = [

Commands\[commandName]::class

];

php artisan test:command

Running Laravel Artisan commands using PHP code

You can also use Laravel Artisan commands from your routes or controllers.

To run a command using PHP code:

For example,

Creating and registering new artisan command

You can create new commands via

php artisan make:command [commandName]

So this will create [commandName] command class inside app/Console/Commands directory. inside

this class you will find protected $signature and protected $description variables, it

represents name and discription of your command which will be used to describe your command.

after creating command you can register your command inside app/Console/Kernel.php class where you

will find commands property.

so you can add your command inside the $command array like :

and then i can use my command via console.

so as example i have named my command like

So whenever i will run

it will call the handle method inside the class having signature test:command.

Read Artisan online: https://riptutorial.com/laravel/topic/1140/artisan

protected $signature = 'test:command';

Artisan::call('command-name');

https://riptutorial.com/laravel/topic/1140/artisan

https://riptutorial.com/ 10

<?php namespace

App;

use Illuminate\Foundation\Auth\User as Authenticatable; use

Illuminate\Notifications\Notifiable;

class Admin extends Authenticatable

{

use Notifiable;

protected $fillable = ['name', 'email', 'password']; protected $hidden =

['password', 'remember_token'];

}

php artisan make:migration create_admins_table

<?php

use Illuminate\Database\Migrations\Migration; use

Illuminate\Database\Schema\Blueprint;

use Illuminate\Support\Facades\Schema;

class CreateAdminsTable extends Migration

{

/**

Chapter 3: Authentication

Examples

Multi Authentication

Laravel allows you to use multiple Authentication types with specific guards.

In laravel 5.3 multiple authentication is little different from Laravel 5.2

I will explain how to implement multiauthentication feature in 5.3

First you need two different user Model

change class name to Admin and set namespace if you use models different. it should look like

App\Admin.php

Also you need create a migration for admin

then edit migration file with contents of default user migration. Looks like this

cp App/User.php App/Admin.php

https://riptutorial.com/ 11

'guards' => ['web'

 => [

'driver' => 'session',

'provider' => 'users',

],

'api' => [

'driver' => 'token',

'provider' => 'users',

],

//Add Admin Guard

'admin' => [

'driver' => 'session',

'provider' => 'admins',

],

],

'providers' => [

'users' => [

'driver' => 'eloquent', 'model' =>

App\User::class,

],

//Add Admins Provider

'admins' => [

'driver' => 'eloquent', 'model' =>

App\Admin::class,

edit config/auth.php

and

* Run the migrations.

*

* @return void

*/

public function up()

{

Schema::create('admins', function (Blueprint $table) {

$table->increments('id');

$table->string('name');

$table->string('email')->unique();

$table->string('password');

$table->rememberToken();

$table->timestamps();

$table->softDeletes();

});

}

/**

* Reverse the migrations.

*

* @return void

*/

public function down()

{

Schema::drop('admins');

}

}

https://riptutorial.com/ 12

<?php

namespace App\Http\Controllers\Admin; use

App\Http\Controllers\Controller;

use Illuminate\Foundation\Auth\AuthenticatesUsers; use

Illuminate\Support\Facades\Auth;

class AuthController extends Controller

{

use AuthenticatesUsers; protected

$guard = 'admin';

protected $redirectTo = '/admin/';

public function showLoginForm()

{

return view('admin.login');

}

protected function guard()

{

return Auth::guard($this->guard);

}

}

Auth::guard('admin')->login($user)

Auth::login($user)

Notice that we add two entry. one in guards variable one in providers variable.

And this is how you use the other guard then "web"

My App\Http\Controllers\Admin\LoginController

this needs little explanation.

in a nutshell Auth::guard('admin') will allow you to use auth methods (such as login, logout,

register etc.) with your admin guard.

For example

will search $user in admins table and login with the user while

will works normally with users table. Default guard is specified in config/auth.php with defaults

array. In fresh laravel it is "web" .

],

],

https://riptutorial.com/ 13

Auth::guard($guard)->attempt(...)

$this->guard()->attempt(...)

In controller you have to implement methods from AuthenticatesUsers to show your custom view

paths. And you need implement other functions such as guard to use your new user guards.

In this example my admin login is admin/login.blade

And by implementing guard() function to return Auth::guard('admin') all AuthenticatesUsers trait

methods works with "admin" guard.

In earlier versions of laravel, this is little different from 5.3

in 5.2 getGuard function returns $guard variable from class and main function (login) use it in

in 5.3 guard function returns whole Auth::guard() and main function use it like

Read Authentication online: https://riptutorial.com/laravel/topic/7051/authentication

https://riptutorial.com/laravel/topic/7051/authentication

https://riptutorial.com/ 14

Gate::define('view-content', function ($user, $content){ return $user-

>isSubscribedTo($content->id);

});

@can('view-content', $content)

<! -- content here --> @endcan

if(Gate::allows('view-content', $content)){

/* user can view the content */

}

OR

if(Gate::denies('view-content', $content)){

/* user cannot view content */

}

Chapter 4: Authorization

Introduction

Laravel provides a simple way to authorise user actions on specific resources. With Authorization,

you can selectively allow users access to certain resources while denying access to others.

Laravel provides a simple API for managing user authorizations by using Gates and Policies. Gates

provide a simple closure based approach to authorisation using the AuthServiceProvider while Policies allow

you to organise authorisation logic around models using classes.

Examples

Using Gates

Gates are closures that determine if a user is allowed to perform a certain action on a resource.

Gates are typically defined in the boot method of AuthServiceProvider and succinctly named to reflect

what it's doing. An example of a gate that allows only premium users to view some content will

look like this:

A Gate always receives a user instance as the first argument, you don't need to pass it when using

the gate, and may optionally receive additional arguments such as the eloquent model in concern.

Authorizing Actions with Gates

To use the example above on a blade template to hide content from the user, you would typically

do something like this:

To completely prevent navigation to the content, you can do the following in your controller:

https://riptutorial.com/ 15

protected $policies = [

Content::class => ContentPolicy::class,

];

function view($user, $content)

{

return $user->isSubscribedTo($content->id);

}

if($user->can('view', $content)){

/* user can view content */

}

Note: You are not required to pass the currently authenticated user to these method, Laravel takes

care of that for you.

Policies

Policies are classes that help you organise authorisation logic around a model resource. Using our

previous example, we might have a ContentPolicy that manages user access to the Content model.

To make ContentPolicy, laravel provides an artisan command. Simply run

php artisan make:policy ContentPolicy

This will make an empty policy class and place in app/Policies folder. If the folder does not exist,

Laravel will create it and place the class inside.

Once created, policies need to be registered to help Laravel know which policies to use when

authorising actions on models. Laravel's AuthServiceProvider, which comes with all fresh Laravel

installations, has a policies property which maps your eloquent models to their authorisation

policies. All you need to do add the mapping to the array.

Writing Policies

Writing Policies follows much the same pattern as writing Gates. The content permission gate can be

rewritten as a Policy like this:

Policies can contain more methods as needed to take care of all authorisation cases for a model.

Authorizing Actions with Policies

Via The User model

The Laravel User model contains two methods that help with authorisations using Policies; can

and can't. These two can be used to determine if a user has authorisation or not on a model

respectively.

To check if a user can view a content or not, you can do the following:

https://riptutorial.com/ 16

Route::get('/contents/{id}, function(Content $content){

/* user can view content */

})->middleware('can:view,content');

pubic function show($id)

{

$content = Content::find($id);

$this->authorize('view', $content);

/* user can view content */

}

Via Middleware

Via Controllers

Laravel provides a helper method, called authorize that takes the name of the policy and the

associated model as arguments, and either authorizes the action based on your authorisation logic

or denies the action and throws an AuthorizationException which the Laravel Exception handler converts

to a 403 HTTP response.

Read Authorization online: https://riptutorial.com/laravel/topic/9360/authorization

OR

if($user->cant('view', $content)){

/* user cannot view content */

}

https://riptutorial.com/laravel/topic/9360/authorization

https://riptutorial.com/ 17

view(string $path, array $data = [])

view('example');

<html>

<head>

<title>Hello world!</title>

</head>

<body>

<h1>Welcome!</h1>

<p>Your name is: <?php echo $name; ?></p>

</body>

</html>

Chapter 5: Blade Templates

Introduction

Laravel supports Blade templating engine out of the box. The Blade templating engine allows us to

create master templates and child templating loading content from master templates, we can have

variables, loops and conditional statements inside the blade file.

Examples

Views: Introduction

Views, in an MVC pattern, contain the logic on how to present data to the user. In a web

application, typically they are used to generate the HTML output that is sent back to users with

each response. By default, views in Laravel are stored in the resources/views directory.

A view can be called using the view helper function:

The first parameter of the helper is the path to a view file, and the second parameter is an optional

array of data to pass to the view.

Therefore, to call the resources/views/example.php, you would use:

View files in subfolders within the resources/views directory, such as

resources/views/parts/header/navigation.php, can be called using dot notation:
view('parts.header.navigation');

Within a view file, such as resources/views/example.php, you're free to include both HTML and PHP

together:

In the previous example (which doesn't use any Blade specific syntax), we output the $name

variable. To pass this value to our view, we would pass an array of values when calling the view

helper:

https://riptutorial.com/ 18

view('example', compact('name'));

view('example',['user-address' => 'Some Address']);

view('example', ['user_address' => 'Some Address']);

@if ($i > 10)

<p>{{ $i }} is large.</p> @elseif ($i ==

10)

<p>{{ $i }} is ten.</p> @else

<p>{{ $i }} is small.</p> @endif

@unless ($user->hasName())

<p>A user has no name.</p>

@endunless

or alternatively, use the compact() helper. In this case, the string passed to compact() corresponds to

the name of the variable we want to pass to the view.

NAMING CONVENTION FOR BLADE VARIABLES

While sending data back to view. You can use underscore for multi-words variablebut with - laravel gives

error.

Like this one will give error (notice hyphen (-) within the user-address

The correct way of doing this will be

Control Structures

Blade provides convenient syntax for common PHP control structures.

Each of the control structures begins with @[structure] and ends with @[endstructure]. Notice that within the

tags, we are just typing normal HTML and including variables with the Blade syntax.

Conditionals

'If' statements

'Unless' statements

(Short syntax for 'if not'.)

view('example', ['name' => $name]);

https://riptutorial.com/ 19

@while (true)

<p>I'm looping forever.</p> @endwhile

@foreach ($users as $id => $name)

<p>User {{ $name }} has ID {{ $id }}.</p> @endforeach

@forelse($posts as $post)

<p>{{ $post }} is the post content.</p> @empty

<p>There are no posts.</p>

@endforelse

Loops

'While' loop

'Foreach' loop

'Forelse' Loop

(Same as 'foreach' loop, but adds a special @empty directive, which is executed when the array

expression iterated over is empty, as a way to show default content .)

Within loops, a special $loop variable will be available, containing information about the state of the

loop:

Property Description

$loop->index The index of the current loop iteration (starts at 0).

$loop->iteration The current loop iteration (starts at 1).

$loop->remaining The remaining loop iterations.

$loop->count The total number of items in the array being iterated.

$loop->first Whether this is the first iteration through the loop.

$loop->last Whether this is the last iteration through the loop.

$loop->depth The nesting level of the current loop.

$loop->parent When in a nested loop, the parent's loop variable.

https://riptutorial.com/ 20

@foreach ($users as $user) @foreach ($user-

>posts as $post)

@if ($loop->parent->first)

This is first iteration of the parent loop. @endif

@endforeach

@endforeach

@foreach ($users as $user) @continue

($user->id == 2)

<p>{{ $user->id }} {{ $user->name }}</p> @break ($user->id

== 4)

@endforeach

1 Dave

3 John

4 William

{{ $variable }}

{{ $array["key"] }}

Example:

Since Laravel 5.2.22, we can also use the directives @continue and @break

Property Description

@continue Stop the current iteration and start the next one.

@break Stop the current loop.

Example :

Then (assuming 5+ users are sorted by ID and no ID is missing) the page will render

Echoing PHP expressions

Any PHP expression within double curly braces {{ $variable }} will be echoed after being run through the

e helper function. (So html special characters (<, >, ", ', &) are safely replaced for the corresponding

html entities.) (The PHP expression must evaluate to string, otherwise an exception will be

thrown.)

Echoing a variable

Echoing an element in an array

https://laravel.com/docs/5.3/helpers#method-e
https://laravel.com/docs/5.3/helpers#method-e

https://riptutorial.com/ 21

{{ $object->property }}

{{ strtolower($variable) }}

<?php echo isset($variable) ? $variable : 'Default'; ?>

<?php echo $variable ?? 'Default'; ?>

{{ $variable or 'Default' }}

{!! $myHtmlString !!}

@include('includes.info', ['title' => 'Information Station'])

Echoing an object property

Echoing the result of a function call

Checking for Existence

Normally, in PHP, to check if a variable is set and print it you would do

• Before PHP 7

• After PHP 7 (using the "Null coalescing operator")

Blade operator or makes this easier:

Raw echos

As mentioned, regular double braces syntax {{ }}, are filtered through PHP's htmlspecialchars function,

for security (preventing malicious injection of HTML in the view). If you would like to bypass this

behavior, for example if you're trying to output a block of HTML content resulting from a PHP

expression, use the following syntax:

Note that it is considered a best practice to use the standard {{ }} syntax to escape your data,

unless absolutely necessary. In addition, when echoing untrusted content (ie. content supplied by

users of your site), you should avoid using the {!! !!} syntax.

Including Partial Views

With Blade, you can also include partial views (called 'partials') directly into a page like so:

https://riptutorial.com/ 22

{{$user}} // Outputs 'abc123'

@include('includes.info')

<p>{{$user}} is the current user.</p>

abc123

abc123 is the current user.

@each('includes.job', $jobs, 'job')

@foreach($jobs as $job) @include('includes.job', ['job' => $job])

@endforeach

@each('includes.job', $jobs, 'job', 'includes.jobsEmpty')

<html>

<head>

<style type='text/css'>

The code above will include the view at 'views/includes/info.blade.php'. It will also pass in a

variable $title having value 'Information Station'.

In general, an included page will have access to any variable that the calling page has access to.

For instance, if we have:

And 'includes/info.blade.php' has the following:

Then the page will render:

Include Each

Sometimes, you will want to combine an include statement with a foreach statement, and access the

variables from within the foreach loop in the include. In this case, use Blade's @each directive:

The first parameter is the page to include. The second parameter is the array to iterate over. The

third parameter is the variable assigned to the elements of the array. The statement above is

equivalent to:

You can also pass an optional fourth argument to the @each directive to specify the view to show

when the array is empty.

Layout Inheritance

A layout is a view file, which is extended by other views which inject blocks of code into their

parent. For example:

parent.blade.php:

https://riptutorial.com/ 23

@extends('parent')

@section('styling')

.main {

color: red;

}

@stop

@section('main-content') This is

child page! @stop

@extends('parent')

@section('styling')

.main {

color: blue;

}

@stop

@section('main-content') This is

another page! @stop

child.blade.php:

otherpage.blade.php:

Here you see two example child pages, which each extend the parent. The child pages define a

@section, which is inserted in the parent at the appropriate @yield statement.

So the view rendered by View::make('child') will say "This is child page!" in red, while

View::make('otherpage') will produce the same html, except with the text "This is another page!" in blue

instead.

It is common to separate the view files, e.g. having a layouts folder specifically for the layout files,

and a separate folder for the various specific individual views.

The layouts are intended to apply code that should appear on every page, e.g. adding a sidebar or

header, without having to write out all the html boilerplate in every individual view.

Views can be extended repeatedly - i.e. page3 can @extend('page2'), and page2 can

@extend('page1').

@yield('styling')

</style>

</head>

<body>

<div class='main'>

@yield('main-content')

</div>

</body>

</html>

https://riptutorial.com/ 24

// "View" is the View Facade

View::share('shareddata', $data);

use Illuminate\Support\Facades\View;

// ...

View::composer('*', function ($view) {

$view->with('somedata', $data);

});

use Illuminate\Support\Facades\View;

// ...

View::composer('*', 'App\Http\ViewComposers\SomeComposer');

The extend command uses the same syntax as used for View::make and @include, so the file

layouts/main/page.blade.php is accessed as layouts.main.page.

Sharing data to all views

Sometimes you need to set the same data in many of your views.

Using View::share

After this, the contents of $data will be available in all views under the name $shareddata.

View::share is typically called in a service provider, or perhaps in the constructor of a controller, so the

data will be shared in views returned by that controller only.

Using View::composer

View composers are callbacks or class methods that are called when a view is rendered. If you

have data that you want to be bound to a view each time that view is rendered, a view composer

can help you organize that logic into a single location. You can directly bind variable to a specific

view or to all views.

Closure-based composer

Class-based composer

As with View::share, it's best to register the composers in a service provider.

If going with the composer class approach, then you would have

App/Http/ViewComposers/SomeComposer.php with:

https://riptutorial.com/ 25

@php($varName = 'Enter content ')

@php

$varName = 'Enter content '; @endphp

{{ $varName }}

These examples use '*' in the composer registration. This parameter is a string that matches the

view names for which to register the composer (* being a wildcard). You can also select a single

view (e.g. 'home') of a group of routes under a subfolder (e.g. 'users.*').

Execute arbitrary PHP code

Although it might not be proper to do such thing in a view if you intend to separate concerns

strictly, the php Blade directive allows a way to execute PHP code, for instance, to set a variable:

(same as:)

later:

Result:

Enter content

Read Blade Templates online: https://riptutorial.com/laravel/topic/1407/blade-templates

use Illuminate\Contracts\View\View;

class SomeComposer

{

public function compose(View $view)

{

$view->with('somedata', $data);

}

}

https://riptutorial.com/laravel/topic/1407/blade-templates

https://riptutorial.com/ 26

"laravel/cashier": "~6.0"

Laravel\Cashier\CashierServiceProvider

// Adjust users table

Schema::table('users', function ($table) {

$table->string('stripe_id')->nullable();

$table->string('card_brand')->nullable();

$table->string('card_last_four')->nullable();

$table->timestamp('trial_ends_at')->nullable();

});

//Create subscriptions table Schema::create('subscriptions', function

($table) {

$table->increments('id');

$table->integer('user_id');

$table->string('name');

$table->string('stripe_id');

Chapter 6: Cashier

Remarks

Laravel Cashier can be used for subscription billing by providing an interface into the subscription

services of both Braintree and Stripe. In addition to basic subscription management it can be used

to handle coupons, exchanging subscriptions, quantities, cancellation grace periods and PDF

invoice generation.

Examples

Stripe Setup

Initial Setup

To use Stripe for handling payments we need to add the following to the composer.json then run

composer update:

The following line then needs to be added to config/app.php, the service provider:

Databse Setup

In order to use cashier we need to configure the databases, if a users table does not already exist

we need to create one and we also need to create a subscriptions table. The following example

amends an existing users table. See Eloquent Models for more information about models.

To use cashier create a new migration and add the following which will achieve the above:

http://www.riptutorial.com/laravel/topic/865/eloquent

https://riptutorial.com/ 27

use Laravel\Cashier\Billable;

class User extends Authenticatable

{

use Billable;

}

'stripe' => [

'model' => App\User::class, 'secret' =>

env('STRIPE_SECRET'),

],

We then need to run php artisan migrate to update our database.

Model Setup

We then have to add the billable trait to the User model found in app/User.php and change it to the

following:

Stripe Keys

In order to ensure that we ares ending the money to our own Stripe account we have to set it up in

the config/services.php file by adding the following line:

Replacing the STRIPE_SECRET with your own stripe secret key.

After completing this Cashier and Strip is setup so you can continue with setting up subscriptions.

Read Cashier online: https://riptutorial.com/laravel/topic/7474/cashier

$table->string('stripe_plan');

$table->integer('quantity');

$table->timestamp('trial_ends_at')->nullable();

$table->timestamp('ends_at')->nullable();

$table->timestamps();

});

https://riptutorial.com/laravel/topic/7474/cashier

https://riptutorial.com/ 28

public function map(Router $router)

{

$this->mapWebRoutes($router);

}

// ...

protected function mapWebRoutes(Router $router)

{

Chapter 7: Change default routing behaviour

in Laravel 5.2.31 +

Syntax

• public function map(Router $router) // Define the routes for the application.

• protected function mapWebRoutes(Router $router) // Define the "web" routes for the

application.

Parameters

Parameter Header

Router $router \Illuminate\Routing\Router $router

Remarks

Middleware means that every call to a route will go through the middleware before actually hitting

your route specific code. In Laravel the web middleware is used to ensure session handling or the

csrf token check for example.

There are other middlewares like auth or api by default. You can also easily create your own

middleware.

Examples

Adding api-routes with other middleware and keep default web middleware

Since Laravel version 5.2.31 the web middleware is applied by default within the

RouteServiceProvider (

https://github.com/laravel/laravel/commit/5c30c98db96459b4cc878d085490e4677b0b67ed)

In app/Providers/RouteServiceProvider.php you will find the following functions which apply the

middleware on every route within your app/Http/routes.php

https://github.com/laravel/laravel/commit/5c30c98db96459b4cc878d085490e4677b0b67ed)

https://riptutorial.com/ 29

public function map(Router $router)

{

$this->mapWebRoutes($router);

$this->mapApiRoutes($router);

}

protected function mapWebRoutes(Router $router)

{

$router->group([

'namespace' => $this->namespace, 'middleware' => 'web',

], function ($router) {

require app_path('Http/routes.php');

});

}

protected function mapApiRoutes(Router $router)

{

$router->group([

'namespace' => $this->namespace, 'middleware' => 'api',

], function ($router) {

require app_path('Http/routes-api.php');

});

}

As you can see the middleware web is applied. You could change this here. However, you can

also easily add another entry to be able to put your api routes for example into another file (e.g.

routes-api.php)

With this you can easily seperate you api routes from your application routes without the messy

group wrapper within your routes.php

Read Change default routing behaviour in Laravel 5.2.31 + online:

https://riptutorial.com/laravel/topic/4285/change-default-routing-behaviour-in-laravel-5-2-31-plus

$router->group([

'namespace' => $this->namespace, 'middleware' => 'web',

], function ($router) {

require app_path('Http/routes.php');

});

}

https://riptutorial.com/laravel/topic/4285/change-default-routing-behaviour-in-laravel-5-2-31-plus

https://riptutorial.com/ 30

$fruits = collect(['oranges', 'peaches', 'pears']);

$fruits = new Illuminate\Support\Collection(['oranges', 'peaches', 'pears']);

$data = [

['name' => 'Taylor', 'coffee_drinker' => true], ['name' =>

'Matt', 'coffee_drinker' => true]

];

$matt = collect($data)->where('name', 'Matt');

Chapter 8: Collections

Syntax

• $collection = collect(['Value1', 'Value2', 'Value3']); // Keys default to 0, 1, 2, ...,

Remarks

Illuminate\Support\Collection provides a fluent and convenient interface to deal with arrays of data. You

may well have used these without knowing, for instance Model queries that fetch multiple records

return an instance of Illuminate\Support\Collection.

For up to date documentation on Collections you can find the official documentation here

Examples

Creating Collections

Using the collect() helper, you can easily create new collection instances by passing in an array such

as:

If you don't want to use helper functions, you can create a new Collection using the class directly:

As mentioned in the remarks, Models by default return a Collection instance, however you are free to

create your own collections as needed. If no array is specified on creation, an empty Collection will

be created.

where()

You can select certain items out of a collection by using the where() method.

This bit of code will select all items from the collection where the name is 'Matt'. In this case, only

the second item is returned.

https://laravel.com/docs/master/collections

https://riptutorial.com/ 31

$data = [

['name' => 'Taylor', 'coffee_drinker' => ['at_work' => true, 'at_home' => true]], ['name' => 'Matt',

'coffee_drinker' => ['at_work' => true, 'at_home' => false]]

];

$coffeeDrinkerAtHome = collect($data)->where('coffee_drinker.at_home', true);

function lookupCallingCode($locale)

{

return collect(['de_DE' => 49,

'en_GB' => 44,

'en_US' => 1,

])->get($locale, 44);

}

lookupCallingCode('de_DE'); // Will return 49

lookupCallingCode('sv_SE'); // Will return 44

Nesting

Just like most array methods in Laravel, where() supports searching for nested elements as well. Let's

extend the example above by adding a second array:

This will only return Taylor, as he drinks coffee at home. As you can see, nesting is supported

using the dot-notation.

Additions

When creating a Collection of objects instead of arrays, those can be filtered using where() as well.

The Collection will then try to receive all desired properties.

5.3

Please note, that since Laravel 5.3 the where() method will try to loosely compare the values by

default. That means when searching for (int)1, all entries containing '1' will be returned as well. If you

don't like that behaviour, you may use the whereStrict() method.

Using Get to lookup value or return default

You often find yourself in a situation where you need to find a variables corresponding value, and

collections got you covered.

In the example below we got three different locales in an array with a corresponding calling code

assigned. We want to be able to provide a locale and in return get the associated calling code.

The second parameter in get is a default parameter if the first parameter is not found.

In the above example we can do the following

https://riptutorial.com/ 32

return collect(['de_DE' => 49,

'en_GB' => 44,

'en_US' => 1,

])->get($locale, function() { return 44;

});

// First we create a collection

$diet = collect([

['name' => 'Banana', 'calories' => '89'], ['name' => 'Chocolate',

'calories' => '546']

]);

// Then we check the collection for items with more than 100 calories

$isUnhealthy = $diet->contains(function ($i, $snack) { return $snack["calories"]

>= 100;

});

// First we collect the participants

$participants = collect([

['name' => 'John', 'age' => 55],

['name' => 'Melissa', 'age' => 18],

['name' => 'Bob', 'age' => 43],

['name' => 'Sara', 'age' => 18],

]);

// Then we ask the collection to fetch all the names

$namesList = $partcipants->pluck('name')

// ['John', 'Melissa', 'Bob', 'Sara'];

You may even pass a callback as the default value. The result of the callback will be returned if

the specified key does not exist:

Using Contains to check if a collection satisfies certain condition

A common problem is having a collection of items that all need to meet a certain criteria. In the

example below we have collected two items for a diet plan and we want to check that the diet

doesn't contain any unhealthy food.

In the above case the $isUnhealthy variable will be set to true as Chocolate meets the condition, and the

diet is thus unhealthy.

Using Pluck to extract certain values from a collection

You will often find yourself with a collection of data where you are only interested in parts of the

data.

In the example below we got a list of participants at an event and we want to provide a the tour

guide with a simple list of names.

You can also use pluck for collections of objects or nested arrays/objects with dot notation.

https://riptutorial.com/ 33

$books = [

['title' => 'The Pragmatic Programmer', 'price' => 20, 'discount' => 0.5], ['title' => 'Continuous Delivery', 'price'

=> 25, 'discount' => 0.1], ['title' => 'The Clean Coder', 'price' => 10, 'discount' => 0.75],

];

$discountedItems = collect($books)->map(function ($book) {

return ['title' => $book["title"], 'price' => $book["price"] * $book["discount"]];

});

//[

// ['title' => 'The Pragmatic Programmer', 'price' => 10],

// ['title' => 'Continuous Delivery', 'price' => 12.5],

// ['title' => 'The Clean Coder', 'price' => 5],

//]

$books = [

['title' => 'The Pragmatic Programmer', 'price' => 20], ['title' => 'Continuous

Delivery', 'price' => 30], ['title' => 'The Clean Coder', 'price' => 10],

]

$min = collect($books)->min('price'); // 10

$max = collect($books)->max('price'); // 30

$avg = collect($books)->avg('price'); // 20

$sum = collect($books)->sum('price'); // 60

Using Map to manipulate each element in a collection

Often you need to change the way a set of data is structured and manipulate certain values.

In the example below we got a collection of books with an attached discount amount. But we much

rather have a list of books with a price that's already discounted.

This could also be used to change the keys, let's say we wanted to change the key title to name

this would be a suitable solution.

Using sum, avg, min or max on a collection for statistical calculations

Collections also provide you with an easy way to do simple statistical calculations.

Sorting a collection

There are a several different ways of sorting a collection.

$users = User::all(); // Returns Eloquent Collection of all users

$usernames = $users->pluck('username'); // Collection contains only user names

$users->load('profile'); // Load a relationship for all models in collection

// Using dot notation, we can traverse nested properties

$names = $users->pluck('profile.first_name'); // Get all first names from all user profiles

https://riptutorial.com/ 34

$collection = collect([5, 3, 1, 2, 4]);

$sorted = $collection->sort(); echo $sorted-

>values()->all(); returns : [1, 2, 3, 4, 5]

$collection = $collection->sort(function ($a, $b) { if ($a == $b) {

return 0;

}

return ($a < $b) ? -1 : 1;

});

$collection = collect([

['name' => 'Desk', 'price' => 200],

['name' => 'Chair', 'price' => 100], ['name' => 'Bookcase',

'price' => 150],

]);

$sorted = $collection->sortBy('price'); echo $sorted-

>values()->all();

returns: [

['name' => 'Chair', 'price' => 100], ['name' => 'Bookcase',

'price' => 150], ['name' => 'Desk', 'price' => 200],

]

$collection = collect([

["id"=>1,"product"=>['name' => 'Desk', 'price' => 200]],

["id"=>2, "product"=>['name' => 'Chair', 'price' => 100]],

["id"=>3, "product"=>['name' => 'Bookcase', 'price' => 150]],

]);

Sort()

The sort method sorts the collection:

The sort method also allows for passing in a custom callback with your own algorithm. Under the

hood sort uses php's usort.

SortBy()

The sortBy method sorts the collection by the given key:

The sortBy method allows using dot notation format to access deeper key in order to sort a multi-

dimensional array.

http://php.net/manual/en/function.usort.php#refsect1-function.usort-parameters

https://riptutorial.com/ 35

$student = [

['class' => 'Math', 'score' => 60],

['class' => 'English', 'score' => 61], ['class' => 'Chemistry',

'score' => 50], ['class' => 'Physics', 'score' => 49],

];

$sum = collect($student)

->reduce(function($carry, $item){ return $carry +

$item["score"];

}, 0);

$isPass = collect($student)

SortByDesc()

This method has the same signature as the sortBy method, but will sort the collection in the

opposite order.

Using reduce()

The reduce method reduces the collection to a single value, passing the result of each iteration into

the subsequent iteration. Please see reduce method.

The reduce method loops through each item with a collection and produces new result to the next

iteration. Each result from the last iteration is passed through the first parameter (in the following

examples, as $carry).

This method can do a lot of processing on large data sets. For example the following examples,

we will use the following example student data:

Sum student's total score

Result: 220

Explanation:

• $carry is the result from the last iteration.

• The second parameter is the default value for the $carry in the first round of iteration. This

case, the default value is 0

Pass a student if all their scores are >= 50

$sorted = $collection->sortBy("product.price")->toArray();

return: [

["id"=>2, "product"=>['name' => 'Chair', 'price' => 100]],

["id"=>3, "product"=>['name' => 'Bookcase', 'price' => 150]],

["id"=>1,"product"=>['name' => 'Desk', 'price' => 200]],

]

https://laravel.com/docs/5.2/collections#method-reduce

https://riptutorial.com/ 36

$isFail = collect($student)

->reduce(function($carry, $item){

return $carry || $item["score"] < 50;

}, false);

$highestSubject = collect($student)

->reduce(function($carry, $item){

return $carry === null || $item["score"] > $carry["score"] ? $item : $carry;

});

Result: false

Explanation:

• Default value of $carry is true

• If all score is greater than 50, the result will return true; if any less than 50, return false.

Fail a student if any score is < 50

Result: true

Explain:

• the default value of $carry is false

• if any score is less than 50, return true; if all scores are greater than 50, return false.

Return subject with the highest score

result: ["subject" => "English", "score" => 61]

Explain:

• The second parameter is not provided in this case.

• The default value of $carry is null, thus we check for that in our conditional.

Using macro() to extend collections

The macro() function allows you to add new functionality to Illuminate\Support\Collection objects Usage:

For example:

Collection::macro("macro_name", function ($parameters) {

// Your macro

});

->reduce(function($carry, $item){

return $carry && $item["score"] >= 50;

}, true);

https://riptutorial.com/ 37

$collection = collect([1, 2, 3]);

$result = $collection[1];

$collection = collect([1, 2, 3]);

$collection[] = 4;

$collection = collect(["a" => "one", "b" => "two"]);

$result = "";

foreach($collection as $key => $value){

$result .= "(".$key.": ".$value.") ";

}

$array = $collection->all();

//or

$array = $collection->toArray()

$collection = collect($array);

Result: ["HELLO", "WORLD"]

Using Array Syntax

The Collection object implements the ArrayAccess and IteratorAggregate interface, allowing it to be used like an

array.

Access collection element:

Result: 2

Assign new element:

Result: $collection is [1, 2, 3, 4]

Loop collection:

Result: $result is (a: one) (b: two)

Array to Collection conversion:

To convert a collection to a native PHP array, use:

To convert an array into a collection, use:

Collection::macro('uppercase', function () { return $this-

>map(function ($item) {

return strtoupper($item);

});

});

collect(["hello", "world"])->uppercase();

https://riptutorial.com/ 38

Using Collections with Array Functions

Please be aware that collections are normal objects which won't be converted properly when used

by functions explicitly requiring arrays, like array_map($callback).

Be sure to convert the collection first, or, if available, use the method provided by the Collection

class instead: $collection->map($callback)

Read Collections online: https://riptutorial.com/laravel/topic/2358/collections

https://riptutorial.com/laravel/topic/2358/collections

https://riptutorial.com/ 39

<input type="hidden" name="_token" value="{{ csrf_token() }}">

Chapter 9: Common Issues & Quick Fixes

Introduction

This section lists the common issues & quick fixes developers (especially beginners) face.

Examples

TokenMisMatch Exception

You get this exception mostly with form submissions. Laravel protects application from CSRF and

validates every request and ensures the request originated from within the application. This

validation is done using a token. If this token mismatches this exception is generated.

Quick Fix

Add this within your form element. This sends csrf_token generated by laravel along with other form

data so laravel knows that your request is valid

Read Common Issues & Quick Fixes online: https://riptutorial.com/laravel/topic/9971/common-

issues---quick-fixes

https://riptutorial.com/laravel/topic/9971/common-issues---quick-fixes
https://riptutorial.com/laravel/topic/9971/common-issues---quick-fixes

https://riptutorial.com/ 40

return [

'CONSTANT' => 'This is my first constant.'

];

use Illuminate\Support\Facades\Config;

echo Config::get('constants.CONSTANT');

Chapter 10: Constants

Examples

Example

First you have to create a file constants.php and it is a good practice to create this file inside

app/config/ folder. You can also add constants.php file in compose.json file.

Example File:

app/config/constants.php

Array based constants inside the file:

And you can get this constant by including the facade Config :

Then get the value by constant name CONSTANT like below :

And the result would be the value :

This is my first constant.

Read Constants online: https://riptutorial.com/laravel/topic/9192/constants

https://riptutorial.com/laravel/topic/9192/constants

https://riptutorial.com/ 41

<?php

namespace App\Http\Controllers; use

App\User;

use App\Http\Controllers\Controller;

class UserController extends Controller

{

/**

* Show the profile for the given user.

*

* @param int $id

* @return Response

*/

public function show($id)

{

return view('user.profile', ['user' => User::findOrFail($id)]);

}

}

Chapter 11: Controllers

Introduction

Instead of defining all of your request handling logic as Closures in route files, you may wish to

organise this behaviour using Controller classes. Controllers can group related request handling

logic into a single class. Controllers are stored in the app/Http/Controllers directory by default.

Examples

Basic Controllers

You can define a route to this controller action like so:

Route::get('user/{id}', 'UserController@show');

Now, when a request matches the specified route URI, the show method on the UserController

class will be executed. Of course, the route parameters will also be passed to the method.

Controller Middleware

Middleware may be assigned to the controller's routes in your route files:

Route::get('profile', 'UserController@show')->middleware('auth');

However, it is more convenient to specify middleware within your controller's constructor. Using

the middleware method from your controller's constructor, you may easily assign middleware to

the controller's action.

https://riptutorial.com/ 42

<?php

namespace App\Http\Controllers; use

Illuminate\Http\Request;

class PhotoController extends Controller

{

/**

* Display a listing of the resource.

*

* @return \Illuminate\Http\Response

*/

public function index()

{

//

}

/**

* Show the form for creating a new resource.

*

* @return \Illuminate\Http\Response

*/

public function create()

{

Resource Controller

Laravel resource routing assigns the typical "CRUD" routes to a controller with a single line of

code. For example, you may wish to create a controller that handles all HTTP requests for

"photos" stored by your application. Using the make:controller Artisan command, we can quickly

create such a controller:

php artisan make:controller PhotoController --resource

This command will generate a controller at app/Http/Controllers/PhotoController.php. The controller

will contain a method for each of the available resource operations.

Example of how a Resource Controller look

class UserController extends Controller

{

/**

* Instantiate a new controller instance.

*

* @return void

*/

public function construct()

{

$this->middleware('auth');

$this->middleware('log')->only('index');

$this->middleware('subscribed')->except('store');

}

}

https://riptutorial.com/ 43

//

}

/**

* Store a newly created resource in storage.

*

* @param \Illuminate\Http\Request $request

* @return \Illuminate\Http\Response

*/

public function store(Request $request)

{

//

}

/**

* Display the specified resource.

*

* @param int $id

* @return \Illuminate\Http\Response

*/

public function show($id)

{

//

}

/**

* Show the form for editing the specified resource.

*

* @param int $id

* @return \Illuminate\Http\Response

*/

public function edit($id)

{

//

}

/**

* Update the specified resource in storage.

*

* @param \Illuminate\Http\Request $request

* @param int $id

* @return \Illuminate\Http\Response

*/

public function update(Request $request, $id)

{

//

}

/**

* Remove the specified resource from storage.

*

* @param int $id

* @return \Illuminate\Http\Response

*/

https://riptutorial.com/ 44

public function destroy($id)

{

//

}

}

The example of the resource controller shares the method name of those in the table below.

https://riptutorial.com/ 45

Next, you may register a resourceful route to the controller:

Route::resource('photos', 'PhotoController');

This single route declaration creates multiple routes to handle a variety of actions on the resource.

The generated controller will already have methods stubbed for each of these actions, including

notes informing you of the HTTP verbs and URIs they handle.

Actions Handled By Resource Controller

Verb URI Action Route Name

GET

/photos index photos.index

GET

/photos/create create photos.create

POST

/photos store photos.store

GET

/photos/{photo} show photos.show

GET

/photos/{photo}/edit edit photos.edit

PUT/PATCH

/photos/{photo} update photos.update

DELETE

/photos/{photo} destroy photos.destroy

Read Controllers online: https://riptutorial.com/laravel/topic/10604/controllers

https://riptutorial.com/laravel/topic/10604/controllers

https://riptutorial.com/ 46

Chapter 12: Cron basics

Introduction

Cron is a task scheduler daemon which runs scheduled tasks at certain intervals. Cron uses a

configuration file called crontab, also known as cron table, to manage the scheduling process.

Examples

Create Cron Job

Crontab contains cron jobs, each related to a specific task. Cron jobs are composed of two parts,

the cron expression, and a shell command to be run:

* * * * * command/to/run

Each field in the above expression * * * * * is an option for setting the schedule frequency. It is

composed of minute, hour, day of month, month and day of week in order of the placement. The

asterisk symbol refers to all possible values for the respective field. As a result, the above cron job

will be run every minute in the day.

The following cron job is executed at 12:30 every day:

30 12 * * * command/to/run

Read Cron basics online: https://riptutorial.com/laravel/topic/9891/cron-basics

https://riptutorial.com/laravel/topic/9891/cron-basics

https://riptutorial.com/ 47

<?php

namespace laravel\Http\Middleware; class

CorsHeaders

{

/**

* This must be executed _before_ the controller action since _after_ middleware isn't executed when exceptions are thrown

and caught by global handlers.

*

* @param $request

* @param \Closure $next

* @param string [$checkWhitelist] true or false Is a string b/c of the way the arguments are supplied.

* @return mixed

*/

public function handle($request, \Closure $next, $checkWhitelist = 'true')

{

if ($checkWhitelist == 'true') {

// Make sure the request origin domain matches one of ours before sending CORS response headers.

$origin = $request->header('Origin');

$matches = [];

preg_match('/^(https?:\/\/)?([a-zA-Z\d]+\.)*(?<domain>[a-zA-Z\d-\.]+\.[a-z]{2,10})$/',

$origin, $matches);

if (isset($matches['domain']) && in_array($matches['domain'], ['yoursite.com']) { header('Access-Control-Allow-Origin: '

. $origin);

header('Access-Control-Expose-Headers: Location'); header('Access-

Control-Allow-Credentials: true');

// If a preflight request comes then add appropriate headers if ($request->method() ===

'OPTIONS') {

header('Access-Control-Allow-Methods: GET, POST, PUT, OPTIONS, DELETE, PATCH'); header('Access-Control-Allow-

Headers: ' . $request->header('Access-Control-Request-

Headers'));

// 20 days

header('Access-Control-Max-Age: 1728000');

}

}

Chapter 13: Cross Domain Request

Examples

Introduction

Sometimes we need cross domain request for our API's in laravel. We need to add appropriate

headers to complete the cross domain request successfully. So we need to make sure that

whatever headers we are adding should be accurate otherwise our API's become vulnerable. In

order to add headers we need to add middleware in laravel which will add the appropriate headers

and forward the requests.

CorsHeaders

https://riptutorial.com/ 48

Read Cross Domain Request online: https://riptutorial.com/laravel/topic/7425/cross-domain-

request

} else {

header('Access-Control-Allow-Origin: *');

}

return $next($request);

}

}

https://riptutorial.com/laravel/topic/7425/cross-domain-request
https://riptutorial.com/laravel/topic/7425/cross-domain-request

https://riptutorial.com/ 49

<?php

if (!function_exists('document')) { function

document($text = '') {

return $text;

}

}

<?php

namespace App\Providers;

class HelpersServiceProvider extends ServiceProvider

{

public function register()

{

require_once DIR . '/../Helpers/document.php';

}

}

Chapter 14: Custom Helper function

Introduction

Adding custom helpers can assist you with your development speed. There are a few things to

take into consideration while writing such helper functions though, hence this tutorial.

Remarks

Just a few pointers:

• We've put the function definitions within a check (function_exists) to prevent exceptions

when the service provider is called twice.

• An alternative way is registering the helpers file from the composer.json file. You can copy the

logic from the laravel framework itself.

Examples

document.php

Create a helpers.php file, let's assume for now it lives in app/Helpers/document.php. You can put

many helpers in one file (this is how Laravel does it) or you can split them up by name.

HelpersServiceProvider.php

Now let's create a service provider. Let's put it under app/Providers:

The above service provider load the helpers file and registers your custom function automatically.

https://github.com/laravel/framework/blob/5.3/src/Illuminate/Support/composer.json#L31

https://riptutorial.com/ 50

'providers' => [

// [..] other providers

App\Providers\HelpersServiceProvider::class,

]

<?php

Route::get('document/{text}', function($text) { return

document($text);

});

Please make sure you register this HelpersServiceProvider in your config/app.php under providers:

Use

Now you can use the function document() everywhere in your code, for example in blade templates.

This example only returns the same string it receives as an argument

Now go to /document/foo in your browser (use php artisan serve or valet), which will return foo.

Read Custom Helper function online: https://riptutorial.com/laravel/topic/8347/custom-helper-

function

https://riptutorial.com/laravel/topic/8347/custom-helper-function
https://riptutorial.com/laravel/topic/8347/custom-helper-function

https://riptutorial.com/ 51

public function render($request, Exception $e)

{

//check if exception is an instance of ModelNotFoundException. if ($e instanceof

ModelNotFoundException)

{

// ajax 404 json feedback if

($request->ajax())

{

return response()->json(['error' => 'Not Found'], 404);

}

// normal 404 view page feedback

return response()->view('errors.missing', [], 404);

}

return parent::render($request, $e);

}

Chapter 15: CustomException class in

Laravel

Introduction

PHP Exceptions are thrown when an unprecedented event or error occurs.

As a rule of thumb, an exception should not be used to control the application logic such as if-

statements and should be a subclass of the Exception class.

One main advantage of having all exceptions caught by a single class is that we are able to create

custom exception handlers that return different response messages depending on the exception.

Examples

CustomException class in laravel

all errors and exceptions, both custom and default, are handled by the Handler class in

app/Exceptions/Handler.php with the help of two methods.

• report()

• render()

then create view related to error in errors folder named 404.blade.php

User not found.

You broke the balance of the internet

Read CustomException class in Laravel online:

https://riptutorial.com/laravel/topic/9550/customexception-class-in-laravel

https://riptutorial.com/laravel/topic/9550/customexception-class-in-laravel

https://riptutorial.com/ 52

'default' => env('DB_CONNECTION', 'mysql'),

'connections' => [

'sqlite' => [

'driver' => 'sqlite',

'database' => database_path('database.sqlite'), 'prefix' => '',

],

'mysql' => [

'driver' => 'mysql',

'host' => env('DB_HOST', 'localhost'), 'port' =>

env('DB_PORT', '3306'),

'database' => env('DB_DATABASE', 'forge'), 'username' =>

env('DB_USERNAME', 'forge'), 'password' =>

env('DB_PASSWORD', ''), 'charset' => 'utf8',

'collation' => 'utf8_unicode_ci', 'prefix' => '',

'strict' => false, 'engine' =>

null,

],

],

Schema::create("table",function(Blueprint $table){

$table->increments('id');

Chapter 16: Database

Examples

Multiple database connections

Laravel allows user work on multiple database connections. If you need to connect to multiple

databases and make them work together, you are beware of the connection setup.

You also allow using different types of database in the same application if you required.

Default connection In config/database.php, you can see the configuration item call:

This name references the connections' name mysql below:

If you did not mention the name of database connection in other codes or commands, Laravel will

pick up the default database connection name. however, in multiple database connections, even

you setup the default connection, you've better setup everywhere which database connection you

used.

Migration file

In migration file, if single database connection, you can use:

https://riptutorial.com/ 53

Schema::connection("sqlite")->create("table",function(Blueprint $table){

$table->increments('id');

});

php artisan migrate

php artisan migrate:install --database=sqlite

php artisan migrate --database=sqlite

php artisan migrate:rollback --database=sqlite

namespace App\Model\Sqlite; class

Table extends Model

{

protected $table="table"; protected

$connection = 'sqlite';

}

namespace App\Model\MySql; class

Table extends Model

{

protected $table="table"; protected

$connection = 'mysql';

}

In multiple database connection, you will use the connection() method to tell Laravel which database

connection you use:

Artisan Migrate

if you use single database connection, you will run:

However, for multiple database connection, you've better tell which database connection

maintains the migration data. so you will run the following command:

This command will install migration table in the target database to prepare migration.

This command will run migration and save the migration data in the target database

This command will rollback migration and save the migration data in the target database

Eloquent Model

To specify a database connection using Eloquent, you need to define the $connection property:

To specify another (second) database connection using Eloquent:

});

https://riptutorial.com/ 54

// Using the sqlite connection Table::on('sqlite')-

>select(...)->get()

// Using the mysql connection Table::on('mysql')-

>select(...)->get()

// Using the sqlite connection

DB::connection('sqlite')->table('table')->select(...)->get()

// Using the mysql connection

DB::connection('mysql')->table('table')->select(...)->get()

$this

->json(

'GET',

'result1/2015-05-08/2015-08-08/a/123'

)

->seeInDatabase("log", ["field"=>"value"], 'sqlite');

use Illuminate\Foundation\Testing\DatabaseMigrations;

class ExampleTest extends TestCase

{

use DatabaseTransactions;

$connectionsToTransact =["mysql","sqlite"] //tell Laravel which database need to rollBack public function testExampleIndex()

{

$this->visit('/action/parameter')

->see('items');

}

}

Laravel will use $connection property defined in a model to utilize the specified connection defined in

config/database.php. If the $connection property is not defined in a model the default will be used.

You may also specify another connection using the static on method:

Database/Query Builder

You may also specify another connection using the query builder:

Unit Test

Laravel provide seeInDatabase($table,$fielsArray,$connection) to test database connection code. In Unit test

file, you need to do like:

In this way, Laravel will know which database connection to test.

Database Transactions in Unit Test

Laravel allows database to rollback all the change during the tests. For testing multiple database

connections, you need to set $connectionsToTransact properties

https://riptutorial.com/ 55

Read Database online: https://riptutorial.com/laravel/topic/1093/database

https://riptutorial.com/laravel/topic/1093/database

https://riptutorial.com/ 56

php artisan make:migration create_first_table --create=first_table

<?php

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

class CreateFirstTable extends Migration

{

public function up()

{

Schema::create('first_table', function (Blueprint $table) {

$table->increments('id');

$table->string('first_string_column_name');

$table->integer('secont_integer_column_name');

$table->timestamps();

});

}

public function down()

{

Schema::drop('first_table');

}

}

php artisan migrate

Chapter 17: Database Migrations

Examples

Migrations

To control your database in Laravel is by using migrations. Create migration with artisan:

This will generate the class CreateFirstTable. Inside the up method you can create your columns:

At the end to run all of your migrations classes you can run the artisan command:

This will create your tables and your columns in your database. Other useful migrate command

are:

• php artisan migrate:rollback - Rollback the last database migration

• php artisan migrate:reset - Rollback all database migrations

• php artisan migrate:refresh - Reset and re-run all migrations

• php artisan migrate:status - Show the status of each migration

Modifying existing tables

Sometimes, you need to change your existing table structure like renaming/deleting columns.

https://riptutorial.com/ 57

//Renaming Column.

public function up()

{

Schema::table('users', function (Blueprint $table) {

$table->renameColumn('email', 'username');

});

}

//Droping Column public

function up()

{

Schema::table('users', function (Blueprint $table) {

$table->dropColumn('username');

});

}

<year>_<month>_<day>_<hour><minute><second>_<name>.php

2016_07_21_134310_add_last_logged_in_to_users_table.php

php artisan make:migration add_last_logged_in_to_users_table

Which you can accomplish by creating a new migration.And In the up method of your migration.

Above example will rename email column of users table to username. While the below code drops a column

username from users table.

IMPROTANT : For modifying columns you need to add doctrine/dbal dependency to project's

composer.json file and run composer update to reflect changes.

The migration files

Migrations in a Laravel 5 application live in the database/migrations directory. Their filenames

conform to a particular format:

One migration file should represent a schema update to solve a particular problem. For example:

Database migrations are kept in chronological order so that Laravel knows in which order to

execute them. Laravel will always execute migrations from oldest to newest.

Generating migration files

Creating a new migration file with the correct filename every time you need to change your

schema would be a chore. Thankfully, Laravel's artisan command can generate the migration for

you:

You can also use the --table and --create flags with the above command. These are optional and just for

convenience, and will insert the relevant boilerplate code into the migration file.

https://riptutorial.com/ 58

php artisan make:migration --path=app/Modules/User/Migrations

<?php

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

class AddLastLoggedInToUsersTable extends Migration

{

/**

* Run the migrations.

*

* @return void

*/

public function up()

{

Schema::table('users', function (Blueprint $table) {

$table->dateTime('last_logged_in')->nullable();

});

}

/**

* Reverse the migrations.

*

* @return void

*/

public function down()

{

Schema::table('users', function (Blueprint $table) {

$table->dropColumn('last_logged_in');

});

}

} ALTER TABLE `users` ADD `last_logged_in` DATETIME NULL

You can specify a custom output path for the generated migration using the --path option. The path

is relative to the application's base path.

Inside a database migration

Each migration should have an up() method and a down() method. The purpose of the up() method is to

perform the required operations to put the database schema in its new state, and the purpose of

the down() method is to reverse any operations performed by the up() method. Ensuring that the down()

method correctly reverses your operations is critical to being able to rollback database schema

changes.

An example migration file may look like this:

When running this migration, Laravel will generate the following SQL to run against your database:

php artisan make:migration add_last_logged_in_to_users_table --table=users

php artisan make:migration create_logs_table --create=logs

https://riptutorial.com/ 59

php artisan migrate

Migrated: 2016_07_21_134310_add_last_logged_in_to_users_table

php artisan migrate --force

php artisan migrate:rollback

php artisan migrate:reset

php artisan migrate:refresh

php artisan migrate:refresh --seed

Running migrations

Once your migration is written, running it will apply the operations to your database.

If all went well, you'll see an output similar to the below:

Laravel is clever enough to know when you're running migrations in the production environment. If

it detects that you're performing a destructive migration (for example, one that removes a column

from a table), the php artisan migrate command will ask you for confirmation. In continuous delivery

environments this may not be wanted. In that case, use the --force flag to skip the confirmation:

If you've only just run migrations, you may be confused to see the presence of a migrations table in

your database. This table is what Laravel uses to keep track of what migrations have already

been run. When issuing the migrate command, Laravel will determine what migrations have yet to

run, and then execute them in chronological order, and then update the migrations table to suit.

You should never manually edit the migrations table unless you absolutely know what you're doing.

It's very easy to inadvertently leave your database in a broken state where your migrations will

fail.

Rolling Back Migrations

What if you want to rollback the latest migration i.e recent operation, you can use the awesome

rollback command. But remember that this command rolls back only the last migration, which may

include multiple migration files

If you are interested in rolling back all of your application migrations, you may use the following

command

Moreover if you are lazy like me and want to rollback and migrate with one command, you may

use this command

You can also specify number of steps to rollback with step option. Like this will rollback 1 step.

https://riptutorial.com/ 60

Read Database Migrations online: https://riptutorial.com/laravel/topic/1131/database-migrations

php artisan migrate:rollback --step=1

https://riptutorial.com/laravel/topic/1131/database-migrations

https://riptutorial.com/ 61

/**

* Run the database seeds.

*

* @return void

*/

public function run()

{

$this->call(UserTableSeeder::class);

}

php artisan db:seed

php artisan make:seed UserTableSeeder

use DB;

use App\Models\User;

class UserTableSeeder extends Illuminate\Database\Seeder{ public function run(){

Chapter 18: Database Seeding

Examples

Running a Seeder

You may add your new Seeder to the DatabaseSeeder class.

To run a database seeder, use the Artisan command

This will run the DatabaseSeeder class. You can also choose to use the --class= option to manually

specify which seeder to run.

*Note, you may need to run composer dumpautoload if your Seeder class cannot be found. This

typically happens if you manually create a seeder class instead of using the artisan command.

Creating a Seed

Database seeds are stored in the /database/seeds directory. You can create a seed using an

Artisan command.

Alternatively you can create a new class which extends Illuminate\Database\Seeder. The class must

a public function named run().

Inserting Data using a Seeder

You can reference models in a seeder.

https://riptutorial.com/ 62

use App\Models\User;

class UserTableSeeder extends Illuminate\Database\Seeder{ public function run(){

factory(User::class)->times(3)->create();

}

}

factory(User::class)->times(3)->create(['password' => '123456']);

<?php

use Illuminate\Database\Seeder; class

UserTableSeeder extends Seeder

{

/**

* Run the database seeds.

*

* @return void

*/

public function run()

{

$sql = file_get_contents(database_path() . '/seeds/users.sql');

DB::statement($sql);

}

}

Inserting data with a Model Factory

You may wish to use Model Factories within your seeds. This will create 3 new users.

You may also want to define specific fields on your seeding like a password, for instance. This will

create 3 users with the same password.

Seeding with MySQL Dump

Follow previous example of creating a seed. This example uses a MySQL Dump to seed a table in

the project database. The table must be created before seeding.

Remove all existing entrie

DB::table('users')->delete() ; User::create([

'name' => 'Admin',

'email' => 'admin@example.com', 'password' =>

Hash::make('password')

]);

}

}

https://riptutorial.com/ 63

INSERT INTO `users` (`id`, `name`, `email`, `password`, `remember_token`, `created_at`,

`updated_at`) VALUES

(1, 'Jane', 'janeDoe@fakemail.com', 'superSecret', NULL, '2016-07-21 00:00:00', '2016-07-21

00:00:00'),

(2, 'John', 'johnny@fakemail.com', 'sup3rS3cr3t', NULL, '2016-07-21 00:00:00', '2016-07-21

00:00:00');

<?php

use Illuminate\Database\Seeder; class

DatabaseSeeder extends Seeder

{

/**

* Run the database seeds.

*

* @return void

*/

public function run()

{

$this->call(UserTableSeeder::class);

}

}

use Faker\Factory as Faker; use

App\Product;

class ProductTableSeeder extends DatabaseSeeder { public function

run()

{

$faker = $this->getFaker();

Our $sql is going to be the contents of our users.sql dump. The dump should have an INSERT

INTO statement. It will be up to you where you store your dumps. In the above example, it is

stored in the project directory \database\seeds. Using laravel's helper function database_path() and

appending the directory and file name of the dump.

DB::statement($sql) will execute the inserts once the Seeder is run. As in previous examples, you can put

the UserTableSeeder in the DatabaseSeeder class provided by laravel:

and run from CLI in project directory php artisan db:seed. Or you can run the Seeder for a single class

using php artisan db:seed --class=UsersTableSeeder

Using faker And ModelFactories to generate Seeds

1) BASIC SIMPLE WAY

Database-driven applications often need data pre-seeded into the system for testing and demo

purposes.

To make such data, first create the seeder class

ProductTableSeeder

https://riptutorial.com/ 64

class DatabaseSeeder extends Seeder { protected

$faker;

public function getFaker() { if (empty($this-

>faker)) {

$faker = Faker\Factory::create();

$faker->addProvider(new Faker\Provider\Base($faker));

$faker->addProvider(new Faker\Provider\Lorem($faker));

}

return $this->faker = $faker;

}

public function run() {

$this->call(ProductTableSeeder::class);

}

}

$factory->define(App\User::class, function (Faker\Generator $faker) { return [

'name' => $faker->name, 'email' =>

$faker->email,

'password' => bcrypt(str_random(10)),

'remember_token' => str_random(10),

];

To call a be able to execute a seeder class, you have call it from the DatabaseSeeder class,

Simply by passing the name of the seeder you wish to run:

use Illuminate\Database\Seeder;

Do not forget to run $ composer dump-autoload after you create the Seeder, since they are not

automatically autoloaded by composer (unless you created seeder by artisan command $ php

artisan make:seeder Name)

Now you are ready to seed by running this artisan command php artisan db:seed

2) USING Model Factories

First of all you to define a default set of attributes for each Model in
App/database/factories/ModelFactory.php

Taking a User model as an exemple, This how a ModelFactory looks like

for ($i = 0; $i < 10; $i++)

{

$name = $faker->word;

$image = $faker->imageUrl;

Modelname::create(['name' =>

$name, 'image' => $image,

]);

}

}

}

https://riptutorial.com/ 65

public function run()

{

factory(App\User::class, 100)->create()

}

public function run()

{

$this->call(UsersTableSeeder::class);

}

Now Create a table seeder php artisan make:seeder UsersTableSeeder

And add this

then add this to the DatabaseSeeder

This will seed the table with 100 records.

Read Database Seeding online: https://riptutorial.com/laravel/topic/1118/database-seeding

});

https://riptutorial.com/laravel/topic/1118/database-seeding

https://riptutorial.com/ 66

Eg:

/

|--var

|---www

| ------- laravel
//create this folder in your shared hosting account

Chapter 19: Deploy Laravel 5 App on Shared

Hosting on Linux Server

Remarks

To get more information on deploying Laravel project on shared hosting, visit this Github repo.

Examples

Laravel 5 App on Shared Hosting on Linux Server

By default Laravel project's public folder exposes the content of the app which can be requested

from anywhere by anyone, the rest of the app code is invisible or inaccessible to anyone without

proper permissions.

After developing the application on your development machine, it needs to be pushed to a

production server so that it can be accessed through the internet from anywhere - right?

For most apps/websites the first choice is to use shared hosting package from hosting service

providers like GoDaddy, HostGator etc. mainly due to low cost.

note: you may ask your provider to manually change document_root, so all you have

to do is upload your Laravel application to server (via FTP), request change of root to

{app}/public and you should be good.

Such shared hosting packages, however do have limitations in terms of terminal access and file

permissions. By default one has to upload their app/code to the public_html folder on their shared

hosting account.

So if you want to upload a Laravel project to a shared hosting account how would you go about it?

Should you upload the entire app (folder) to the public_html folder on your shared hosting account? -

Certainly NO

Because everything in the public_html folder is accessible "publically i.e. by anyone" which would be

a big security risk.

Steps to upload a project to shared hosting account - the Laravel way

Step 1

Create a folder called laravel (or anything you like) on the same level as the public_html folder.

https://github.com/petehouston/laravel-deploy-on-shared-hosting

https://riptutorial.com/ 67

require DIR .'/../bootstrap/autoload.php';

require DIR .'/../laravel/bootstrap/autoload.php';

$app = require_once DIR .'/../bootstrap/app.php';

$app = require_once DIR .'/../laravel/bootstrap/app.php';

require_once DIR .'/public/index.php';

Step 2

Copy every thing except the public folder from your laravel project (on development machine) in the

laravel folder (on server host - shared hosting account).

You can use:

• C-panel : which would be the slowest option

• FTP Client: like FileZilla to connect to you shared hosting account and transfer your files

and folders through FTP upload

• Map Network Drive: you can also create a mapped network drive on your development

machine to connect to your shared hosting account's root folder using "ftp://your-domain-

name" as the network address.

Step 3

Open the public folder of your laravel project (on development machine), copy everything and paste

in the public_html folder (on server host - shared hosting account).

Step 4

Now open the index.php file in the public_html folder on the shared hosting account (in cpanel editor or

any other connected editor) and:

Change:

To:

And Change:

To:

Save and close.

Step 5

Now go to the laravel folder (on shared hosting account -server) and open server.php file

Change

To:

| ------- public_html

| ------- log

ftp://your-domain-name/
ftp://your-domain-name/
ftp://your-domain-name/

https://riptutorial.com/ 68

Save and close.

Step 6

Set file permissions for the laravel/storage folder (recursively) and all files, sub-folders and file within

them on shared hosting account - server to 777.

Note: Be careful with the file permissions in linux, they are like double edged sword, if not used

correctly, they may make your app vulnerable to attacks. For understanding Linux file permissions

you can read https://www.linux.com/learn/tutorials/309527-understanding-linux-file-permissions

Step 7

As .env file of local/development server is Ignored by git and it should be ignored as it has all the

environment variables including the APP_KEY and it should not be exposed to public by pushing it

into the repositories'. You can also see that .gitignore file has .env mentioned thus it will not upload it to

repositories.

After following all the above steps make a .env file in the laravel folder and add all the environment

variable which you have used from the local/development server's .env file to the .env file of production

server.

Even there are configuration files like app.php, database.php in config folder of laravel application which

defines this variables as by default in second parameter of env() but don't hard-code the values in

these files as it will affect the configuration files of the users who pulls your repository. So it is

recommended to create .env file manually!

Also laravel gives .env-example file that you can use as a reference.

That's it.

Now when you visit the url which you configured as the domain with your server, your laravel app

should work just as it worked on your localhost - development machine, while still the application

code is safe and not accessible by anyone without proper file permissions.

Read Deploy Laravel 5 App on Shared Hosting on Linux Server online:

https://riptutorial.com/laravel/topic/2410/deploy-laravel-5-app-on-shared-hosting-on-linux-server

require_once DIR .'../public_html/index.php';

https://www.linux.com/learn/tutorials/309527-understanding-linux-file-permissions
https://riptutorial.com/laravel/topic/2410/deploy-laravel-5-app-on-shared-hosting-on-linux-server

https://riptutorial.com/ 69

namespace App;

class Application extends \Illuminate\Foundation\Application

{

/**

* @inheritdoc

*/

public function path($path = '')

{

return $this->basePath . DIRECTORY_SEPARATOR . 'src' . ($path ? DIRECTORY_SEPARATOR .

$path : $path);

}

}

$app = new Illuminate\Foundation\Application(realpath(DIR

.'/../')

);

$app = new App\Application(realpath(DIR .'/../')

Chapter 20: Directory Structure

Examples

Change default app directory

There are use cases when you might want to rename your app directory to something else. In

Laravel4 you could just change a config entry, here's one way to do it in Laravel5.

In this example we'll be renaming the app directory to src.

Override Application class

The directories name app is hardcoded into the core Application class, so it has to be overridden.

Create a new file Application.php. I prefer to keep mine in the src directory (the one we'll be replacing

app with), but you can place it elsewhere.

Here's how the overridden class should look like. If you want a different name, just change the

string src to something else.

Save the file. We're done with it.

Calling the new class

Open up bootstrap/app.php and locate

We'll be replacing it with this

https://riptutorial.com/ 70

"psr-4": {

"App\\": "src/"

}

protected $namespace = 'App\Http\Controllers';

protected $namespace = 'App\Controllers';

Composer

Open up your composer.json file and change autoloading to match your new location

And finally, in the command line run composer dump-autoload and your app should be served from the src

directory.

Change the Controllers directory

if we want to change the Controllers directory we need:

1. Move and/or rename the default Controllers directory where we want it. For example from

app/Http/Controllers to app/Controllers

2. Update all the namespaces of the files inside the Controllers folder, making they adhere to the

new path, respecting the PSR-4 specific.

3. Change the namespace that is applied to the routes.php file, by editing

app\Providers\RouteServiceProvider.php and change this:

to this:

Read Directory Structure online: https://riptutorial.com/laravel/topic/3153/directory-structure

);

https://riptutorial.com/laravel/topic/3153/directory-structure

https://riptutorial.com/ 71

class User extends Model

{

protected $table = 'customers';

}

Chapter 21: Eloquent

Introduction

The Eloquent is an ORM (Object Relational Model) included with the Laravel. It implements the

active record pattern and is used to interact with relational databases.

Remarks

Table naming

The convention is to use pluralised “snake_case” for table names and singular “StudlyCase” for

model names. For example:

• A cats table would have a Cat model

• A jungle_cats table would have a JungleCat model

• A users table would have a User model

• A people table would have a Person model

Eloquent will automatically try to bind your model with a table that has the plural of the name of the

model, as stated above.

You can, however, specify a table name to override the default convention.

Examples

Introduction

Eloquent is the ORM built into the Laravel framework. It allows you to interact with your database

tables in an object-oriented manner, by use of the ActiveRecord pattern.

A single model class usually maps to a single database table, and also relationships of different

types (one-to-one, one-to-many, many-to-many, polymorphic) can be defined between different

model classes.

Section Making a Model describes the creation and definition of model classes.

Before you can start using Eloquent models, make sure at least one database connection has

been configured in your config/database.php configuration file.

To understand usage of eloquent query builder during development you may use php artisan ide-

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Active_record_pattern
http://stackoverflow.com/documentation/laravel/7960/eloquent-relationship/25764/one-to-one#t%3D201705171503347387636
http://www.riptutorial.com/laravel/example/27340/relationship-types
http://www.riptutorial.com/laravel/example/27341/many-to-many
http://www.riptutorial.com/laravel/example/4292/making-a-model

https://riptutorial.com/ 72

$user = new User();

$user->first_name = 'John';

$user->last_name = 'Doe';

$user->email = 'john.doe@example.com';

$user->password = bcrypt('my_password');

$user->save();

User::create(['first_name'=> 'John',

'last_name' => 'Doe',

'email' => 'john.doe@example.com',

'password' => bcrypt('changeme'),

]);

class User extends Model

{

protected $fillable = [

'first_name', 'last_name',

'email', 'password',

];

}

class User extends Model

{

/**

* The attributes that aren't mass assignable.

*

helper:generate command. Here is the link.

Sub-topic Navigation

Eloquent Relationship

Persisting

In addition to reading data with Eloquent, you can also use it to insert or update data with the save()

method. If you have created a new model instance then the record will be inserted; otherwise, if

you have retrieved a model from the database and set new values, it will be updated.

In this example we create a new User record:

You can also use the create method to populate fields using an array of data:

When using the create method your attributes should be declared in the fillable array within your

model:

Alternatively, if you would like to make all attributes mass assignable, you may define the

$guarded property as an empty array:

https://github.com/barryvdh/laravel-ide-helper
http://www.riptutorial.com/laravel/topic/7960/eloquent---relationship

https://riptutorial.com/ 73

User::forceCreate(['first_name'=>

'John', 'last_name' => 'Doe',

'email' => 'john.doe@example.com',

'password' => bcrypt('changeme'),

]);

$user = User::find(1);

$user->password = bcrypt('my_new_password');

$user->save();

$user->update([

'password' => bcrypt('my_new_password'),

]);

// Updating a user from specific request data

$data = Request::only(['first_name', 'email']);

$user->find(1);

$user->update($data);

// Create a user from specific request data

$data = Request::except(['_token', 'profile_picture', 'profile_name']);

$user->create($data);

But you can also create a record without even changing fillable attribute in your model by using

forceCreate method rather than create method

The following is an example of updating an existing User model by first loading it (by using find),

modifying it, and then saving it:

To accomplish the same feat with a single function call, you may use the update method:

The create and update methods make working with large sets of data much simpler than having to set

each key/value pair individually, as shown in the following examples:

Note the use of only and except when gathering request data. It's important you specify the

exact keys you want to allow/disallow to be updated, otherwise it's possible for an

attacker to send additional fields with their request and cause unintended updates.

Deleting

You can delete data after writing it to the database. You can either delete a model instance if you

have retrieved one, or specify conditions for which records to delete.

To delete a model instance, retrieve it and call the delete() method:

* @var array

*/

protected $guarded = [];

}

https://riptutorial.com/ 74

User::destroy(1); User::destroy([1, 2,

3]);

User::where('age', '<', 21)->delete();

namespace Illuminate\Database\Eloquent\Model; namespace

Illuminate\Database\Eloquent\SoftDeletes;

class User extends Model

{

use SoftDeletes;

}

Schema::table('users', function ($table) {

$table->softDeletes();

});

User::withTrashed()->get();

Alternatively, you can specify a primary key (or an array of primary keys) of the records you wish

to delete via the destroy() method:

You can also combine querying with deleting:

This will delete all users who match the condition.

Note: When executing a mass delete statement via Eloquent, the deleting and deleted

model events will not be fired for the deleted models. This is because the models are

never actually retrieved when executing the delete statement.

Soft Deleting

Some times you don’t want to permanently delete a record, but keep it around for auditing or

reporting purposes. For this, Eloquent provides soft deleting functionality.

To add soft deletes functionality to your model, you need to import the SoftDeletes trait and add it to

your Eloquent model class:

When deleting a model, it will set a timestamp on a deleted_at timestamp column in the table for your

model, so be sure to create the deleted_at column in your table first. Or in migration you should call

softDeletes() method on your blueprint to add the deleted_at timestamp. Example:

Any queries will omit soft-deleted records. You can force-show them if you wish by using the

withTrashed() scope:

If you wish to allow users to restore a record after soft-deleting (i.e. in a trash can-type area) then

$user = User::find(1);

$user->delete();

https://riptutorial.com/ 75

$user = User::find(1);

$user->delete();

$user->restore();

$user = User::find(1);

$user->forceDelete();

class Citizen extends Model

{

protected $primaryKey = 'socialSecurityNo';

// ...

}

class Citizen extends Model

{

protected $primaryKey = 'socialSecurityNo'; public

$incrementing = false;

// ...

}

class Citizen extends Model

{

public $timestamps = false;

// ...

}

you can use the restore() method:

To forcefully delete a record use the forceDelete() method which will truly remove the record from the

database:

Change primary key and timestamps

By default, Eloquent models expect for the primary key to be named 'id'. If that is not your case,

you can change the name of your primary key by specifying the $primaryKey property.

Now, any Eloquent methods that use your primary key (e.g. find or findOrFail) will use this new name.

Additionally, Eloquent expects the primary key to be an auto-incrementing integer. If your primary

key is not an auto-incrementing integer (e.g. a GUID), you need to tell Eloquent by updating the

$incrementing property to false:

By default, Eloquent expects created_at and updated_at columns to exist on your tables. If you do not

wish to have these columns automatically managed by Eloquent, set the $timestamps property on

your model to false:

https://riptutorial.com/ 76

class Citizen extends Model

{

const CREATED_AT = 'date_of_creation'; const UPDATED_AT

= 'date_of_last_update';

// ...

}

Vehicle::findOrFail(1);

Vehicle::where('make', 'ford')->firstOrFail();

$vehicle = Vehicle::find($id);

if (!$vehicle) {

abort(404);

}

$robot = Robot::find(1);

$cloneRobot = $robot->replicate();

// You can add custom attributes here, for example he may want to evolve with an extra arm!

$cloneRobot->arms += 1;

$cloneRobot->save();

If you need to customize the names of the columns used to store the timestamps, you may set the

CREATED_AT and UPDATED_AT constants in your model:

Throw 404 if entity not found

If you want to automatically throw an exception when searching for a record that isn't found on a

modal, you can use either

or

If a record with the primary key of 1 is not found, a ModelNotFoundException is thrown. Which is essentially

the same as writing (view source):

Cloning Models

You may find yourself needing to clone a row, maybe change a few attributes but you need an

efficient way to keep things DRY. Laravel provides a sort of 'hidden' method to allow you to do this

functionality. Though it is completely undocumented, you need to search through the API to find it.

Using $model->replicate() you can easily clone a record

The above would find a robot that has an ID of 1, then clones it.

Read Eloquent online: https://riptutorial.com/laravel/topic/865/eloquent

https://laravel.com/api/5.2/Illuminate/Database/Eloquent/ModelNotFoundException.html
https://github.com/laravel/framework/blob/a5e56a5cd11983b0b67740a6af2f25e23cd9b8e8/src/Illuminate/Database/Eloquent/Builder.php#L297-L304
https://riptutorial.com/laravel/topic/865/eloquent

https://riptutorial.com/ 77

User::whereHas('articles', function (Builder $query) {

$query->where('published', '!=', true);

})->get();

User::with('articles')->get();

User::with('articles','posts')->get();

User::with('posts.comments')->get();

User::with('posts.comments.likes')->get()

$post = Post::find(1);

$commentToAdd = new Comment(['message' => 'This is a comment.']);

Chapter 22: Eloquent : Relationship

Examples

Querying on relationships

Eloquent also lets you query on defined relationships, as show below:

This requires that your relationship method name is articles in this case. The argument passed

into the closure is the Query Builder for the related model, so you can use any queries here that

you can elsewhere.

Eager Loading

Suppose User model has a relationship with Article model and you want to eager load the related

articles. This means the articles of the user will be loaded while retrieving user.

articles is the relationship name (method) in User model.

if you have multiple relationship. for example articles and posts.

and to select nested relationships

Call more than one nested relationship

Inserting Related Models

Suppose you have a Post model with a hasMany relationship with Comment. You may insert a Comment

object related to a post by doing the following:

https://riptutorial.com/ 78

$post = Post::find(1);

$post->comments()->saveMany([

new Comment(['message' => 'This a new comment']), new

Comment(['message' => 'Me too!']),

new Comment(['message' => 'Eloquent is awesome!'])

]);

$post = Post::find(1);

$post->comments()->create([

'message' => 'This is a new comment message'

]);

$user->posts()->where('active', 1)->get();

public function comments()

{

return $this->belongsTo(Post::class);

}

You can save multiple models at once using the saveMany function:

Alternatively, there's also a create method which accepts a plain PHP array instead of an Eloquent

model instance.

Introduction

Eloquent relationships are defined as functions on your Eloquent model classes. Since, like

Eloquent models themselves, relationships also serve as powerful query builders, defining

relationships as functions provides powerful method chaining and querying capabilities. For

example, we may chain additional constraints on this posts relationship:

Navigate to parent topic

Relationship Types

One to Many

Lets say that each Post may have one or many comments and each comment belongs to just a

single Post.

so the comments table will be having post_id. In this case the relationships will be as follows.

Post Model

If the foreign key is other than post_id, for example the foreign key is example_post_id.

$post->comments()->save($commentToAdd);

http://www.riptutorial.com/laravel/topic/865/eloquent

https://riptutorial.com/ 79

public function comments()

{

return $this->belongsTo(Post::class, 'example_post_id', 'other_id');

}

public function post()

{

return $this->hasMany(Comment::class);

}

<?php namespace

App;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{

/**

* Get the phone record associated with the user.

*/

public function phone()

{

return $this->hasOne('Phone::class', 'foreign_key', 'local_key');

}

}

and plus, if the local key is other than id, for example the local key is other_id

Comment Model

defining inverse of one to many

One to One

How to associate between two models (example: User and Phone

model)

App\User

App\Phone

public function comments()

{

return $this->belongsTo(Post::class, 'example_post_id');

}

https://riptutorial.com/ 80

<?php namespace

App;

use Illuminate\Database\Eloquent\Model;

https://riptutorial.com/ 81

public function permissions()

{

return $this->belongsToMany(Permission::class);

}

public function roles()

{

return $this->belongsToMany(Roles::class);

}

foreign_key : By default Eloquent will assume this value to be other_model_name_id (in this case

user_id and phone_id), change it if it isn't the case.

local_key : By default Eloquent will assume this value to be id (current model primary key), change it if

it isn't the case.

If your database filed name as per laravel standard, you don't need to provide foreign

key and local key in relationship declaration

Explanation

Many to Many

Lets say there is roles and permissions. Each role may belongs to many permissions and each

permission may belongs to many role. so there will be 3 tables. two models and one pivot table. a

roles, users and permission_role table.

Role Model

Permission Model

Note: 1

consider following while using different table name for pivot table.

Suppose if you want to use role_permission instead of permission_role, as eloquent uses alphabetic

order for building the pivot key names. you will need to pass pivot table name as second

parameter as follows.

Role Model

class Phone extends Model

{

/**

* Get the user that owns the phone.

*/

public function user()

{

return $this->belongsTo('User::class', 'foreign_key', 'local_key');

}

}

https://riptutorial.com/ 82

public function roles()

{

return $this->belongsToMany(Roles::class, 'role_permission');

}

public function permissions()

{

return $this->belongsToMany(Permission::class, 'role_permission', 'other_role_id', 'other_permission_id');

}

public function roles()

{

return $this->belongsToMany(Roles::class, 'role_permission', 'other_permission_id', 'other_role_id');

}

user

id - integer name -

string email - string

product

Permission Model

Note: 2

consider following while using different key names in pivot table.

Eloquent assumes that if no keys are passed as third and fourth parameters that it will be the

singular table names with _id. so it assumes that the pivot will be having role_id and permission_id fields. If

keys other than these are to be used it should be passed as third and fourth parameters.

Lets say if other_role_id instead of role_id and other_permission_id instead of permission_id is to be used. So it

would be as follows.

Role Model

Permission Model

Polymorphic

Polymorphic relations allow a model to belong to more than one other model on a single

association. A good example would be images, both a user and a product can have an image. The

table structure might look as follows:

public function permissions()

{

return $this->belongsToMany(Permission::class, 'role_permission');

}

https://riptutorial.com/ 83

<?php namespace

App;

use Illuminate\Database\Eloquent\Model;

class Image extends Model

{

/**

* Get all of the owning imageable models.

*/

public function imageable()

{

return $this->morphTo();

}

}

class User extends Model

{

/**

* Get all of the user's images.

*/

public function images()

{

return $this->morphMany('Image::class', 'imageable');

}

}

class Product extends Model

{

/**

* Get all of the product's images.

*/

public function images()

{

return $this->morphMany('Image::class', 'imageable');

}

}

The important columns to look at are in the images table. The imageable_id column will contain the ID

value of the user or product, while the imageable_type column will contain the class name of the

owning model. In your models, you setup the relations as follows:

You may also retrieve the owner of a polymorphic relation from the polymorphic model by

accessing the name of the method that performs the call to morphTo. In our case, that is the imageable

method on the Image model. So, we will access that method as a dynamic property

id - integer title -

string SKU - string

image

id - integer url -

string

imageable_id - integer

imageable_type - string

https://riptutorial.com/ 84

public function permissions()

{

return $this->belongsToMany(Permission::class);

}

public function roles()

{

return $this->belongsToMany(Roles::class);

}

public function permissions()

{

return $this->belongsToMany(Permission::class, 'role_permission');

}

public function roles()

{

return $this->belongsToMany(Roles::class, 'role_permission');

}

This imageable will return either a User or a Product.

Many To Many

Lets say there is roles and permissions. Each role may belongs to many permissions and each

permission may belongs to many role. so there will be 3 tables. two models and one pivot table. a

roles, users and permission_role table.

Role Model

Permission Model

Note: 1

consider following while using different table name for pivot table.

Suppose if you want to use role_permission instead of permission_role, as eloquent uses alphabetic

order for building the pivot key names. you will need to pass pivot table name as second

parameter as follows.

Role Model

Permission Model

Note: 2

consider following while using different key names in pivot table.

$image = App\Image::find(1);

$imageable = $image->imageable;

https://riptutorial.com/ 85

public function permissions()

{

return $this->belongsToMany(Permission::class, 'role_permission', 'other_role_id', 'other_permission_id');

}

public function roles()

{

return $this->belongsToMany(Roles::class, 'role_permission', 'other_permission_id', 'other_role_id');

}

public function permissions()

{

return $this->belongsToMany(Permission::class, 'role_permission', 'other_role_id', 'other_permission_id')-

>withPivot('permission_assigned_date');

}

$role= App\Role::find(1);

$role->permissions()->attach($permissionId);

$rol->roles()->attach($permissionId, ['permission_assigned_date' => $date]);

Eloquent assumes that if no keys are passed as third and fourth parameters that it will be the

singular table names with _id. so it assumes that the pivot will be having role_id and permission_id fields. If

keys other than these are to be used it should be passed as third and fourth parameters.

Lets say if other_role_id instead of role_id and other_permission_id instead of permission_id is to be used. So it

would be as follows.

Role Model

Permission Model

Accessing Intermediate table using withPivot()

Suppose you have a third column 'permission_assigned_date' in the pivot table . By default, only

the model keys will be present on the pivot object. Now to get this column in query result you need

to add the name in withPivot() function.

Attaching / Detaching

Eloquent also provides a few additional helper methods to make working with related models more

convenient. For example, let's imagine a user can have many roles and a role can have many

permissions. To attach a role to a permission by inserting a record in the intermediate table that

joins the models, use the attach method:

When attaching a relationship to a model, you may also pass an array of additional data to be

inserted into the intermediate table:

https://riptutorial.com/ 86

$role= App\Role::find(1);

//will remove permission 1,2,3 against role 1

$role->permissions()->detach([1, 2, 3]);

//will keep permission id's 1,2,3 against Role id 1

$role= App\Role::find(1)

$role->permissions()->sync([1, 2, 3]);

Similarly, To remove a specific permission against a role use detach function

Syncing Associations

You may also use the sync method to construct many-to-many associations. The sync method

accepts an array of IDs to place on the intermediate table. Any IDs that are not in the given array

will be removed from the intermediate table. So, after this operation is complete, only the IDs in

the given array will exist in the intermediate table:

Read Eloquent : Relationship online: https://riptutorial.com/laravel/topic/7960/eloquent---

relationship

https://riptutorial.com/laravel/topic/7960/eloquent---relationship
https://riptutorial.com/laravel/topic/7960/eloquent---relationship

https://riptutorial.com/ 87

<?php namespace

App;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{

/**

* Get the user's first name.

*

* @param string $value

* @return string

*/

public function getFirstNameAttribute($value)

{

return ucfirst($value);

}

}

$user = App\User::find(1);

$firstName = $user->first_name;

Chapter 23: Eloquent: Accessors & Mutators

Introduction

Accessors and mutators allow you to format Eloquent attribute values when you retrieve or set

them on model instances. For example, you may want to use the Laravel encrypter to encrypt a

value while it is stored in the database, and then automatically decrypt the attribute when you

access it on an Eloquent model. In addition to custom accessors and mutators, Eloquent can also

automatically cast date fields to Carbon instances or even cast text fields to JSON.

Syntax

• set{ATTRIBUTE}Attribute($attribute) // in camel case

Examples

Defining An Accessors

Getting Accessor:

As you can see, the original value of the column is passed to the accessor, allowing you to

manipulate and return the value. To access the value of the accessor, you may simply access the

first_name attribute on a model instance:

https://riptutorial.com/ 88

class User extends Model

{

public function setPasswordAttribute($password)

{

$this->attributes['password'] = bcrypt($password);

}

...

}

$user = $users->first();

$user->password = 'white rabbit'; //laravel calls mutator on background

$user->save(); // password is bcrypted and one does not need to call bcrypt('white rabbit')

Defining a Mutator

Above code does "bcrypting" each time password property is set.

Read Eloquent: Accessors & Mutators online: https://riptutorial.com/laravel/topic/8305/eloquent--

accessors---mutators

https://riptutorial.com/laravel/topic/8305/eloquent--accessors---mutators
https://riptutorial.com/laravel/topic/8305/eloquent--accessors---mutators

https://riptutorial.com/ 89

php artisan make:model [ModelName]

php artisan make:model [ModelName] -m

php artisan make:migration [migration name]

php artisan make:model Cat -m

Chapter 24: Eloquent: Model

Examples

Making a Model

Model creation

Model classes must extend Illuminate\Database\Eloquent\Model. The default location for models is the /app

directory.

A model class can be easily generated by the Artisan command:

This will create a new PHP file in app/ by default, which is named [ModelName].php, and will contain all

the boilerplate for your new model, which includes the class, namespace, and using's required for

a basic setup.

If you want to create a migration file along with your Model, use the following command, where -m

will also generate the migration file:

In addition to creating the model, this creates a database migration that is hooked up to the model.

The database migration PHP file is located by default in database/migrations/. This does not--by default-

-include anything other than the id and created_at/updated_at columns, so you will need to edit the file to

provide additional columns.

Note that you will have to run the migration (once you have set up the migration file) in order for

the model to start working by using php artisan migrate from project root

In addition, if you wish to add a migration later, after making the model, you can do so by running:

Say for example you wanted to create a model for your Cats, you would have two choices, to

create with or without a migration. You would chose to create without migration if you already had

a cats table or did not want to create one at this time.

For this example we want to create a migration because we don't already have a table so would

run the following command.

http://www.riptutorial.com/laravel/topic/1140/artisan

https://riptutorial.com/ 90

public function up()

{

Schema::create('cats', function (Blueprint $table) {

$table->increments('id');

$table->string('name');

$table->integer('age');

$table->string('colour');

$table->timestamps();

//Predefined ID

//Name

//Age

//Colour

//Predefined Timestamps

});

}

php artisan migrate

namespace App\Fruits;

use Illuminate\Database\Eloquent\Model; class Banana

extends Model {

// Implementation of "Banana" omitted

}

This command will create two files:

1. In the App folder: app/Cat.php

2. In the database folder: database/migrations/timestamp_creat_cats_table.php

The file we are interested in is the latter as it is this file that we can decide what we want the table

to look like and include. For any predefined migration we are given an auto incrementing id column

and a timestamps columns.

The below example of an extract of the migration file includes the above predefined columns as

well as the addition of a the name of the cat, age and colour:

So as you can see it is relatively easy to create the model and migration for a table. Then to

execute the migration and create it in your data base you would run the following command:

Which will migrate any outstanding migrations to your database.

Model File Location

Models can be stored anywhere thanks to PSR4.

By default models are created in the app directory with the namespace of App. For more complex

applications it's usually recommended to store models within their own folders in a structure that

makes sense to your apps architecture.

For example, if you had an application that used a series of fruits as models, you could create a

folder called app/Fruits and within this folder you create Banana.php (keeping the StudlyCase naming

convention), you could then create the Banana class in the App\Fruits namespace:

http://www.php-fig.org/psr/psr-4/
https://en.wikipedia.org/wiki/Studly_caps

https://riptutorial.com/ 91

Model configuration

Eloquent follows a "convention over configuration" approach. By extending the base Model class, all

models inherit the properties listed below. Unless overridden, the following default values apply:

Property Description Default

protected

$connection
DB connection name Default DB connection

protected

$table

Table name

By default, the class name is converted

to snake_case and pluralized. For example,

SpecialPerson becomes
special_people

protected

$primaryKey
Table PK id

public

$incrementing

Indicates if the IDs are auto-
true

incrementing

public

$timestamps

Indicates if the model should be
true

timestamped

const

CREATED_AT

Name of the creation timestamp
created_at

column

const

UPDATED_AT

Name of the modification
updated_at

timestamp column

protected

$dates

protected

$dateFormat

Attributes that should be

mutated to DateTime, in

addition to the timestamps

attributes

Format in which date attributes

will be persisted

[]

Default for current SQL dialect.

protected $with
Relationships to eagerload with

[]
model

protected

$hidden

Attributes omitted in model
[]

serialization

protected

$visible

Attributes allowed in model
[]

serialization

protected

$appends

Attribute accessors added to
[]

model serialization

http://stackoverflow.com/documentation/laravel/865/eloquent/4293/eager-loading#t%3D201607291528232352311

https://riptutorial.com/ 92

protected Attributes that are mass- []

https://riptutorial.com/ 93

Attributes that should be casted to native types []

protected $casts

Default Description Property

$user = User::find(1);

$user->name = 'abc';

$user->save();

$user = User::find(1);

$user->update(['name' => 'abc', 'location' => 'xyz']);

User::where('id', '>', 2)->update(['location' => 'xyz']);

$user = User::find(1);

$user->update(['name' => 'abc', 'location' => 'xyz'], ['touch' => false]);

5.0

Update an existing model

You can also update multiple attributes at once using update, which does not require using save

afterwards:

You can also update a model(s) without querying it beforehand:

If you don't want to trigger a change to the updated_at timestamp on the model then you can pass the

touch option:

Read Eloquent: Model online: https://riptutorial.com/laravel/topic/7984/eloquent--model

$fillable assignable

protected

$guarded

Attributes that are black-listed

from mass assignment
[*] (All attributes)

protected

$touches

The relationships that should be
[]

touched on save

protected

$perPage

The number of models to return
15

for pagination.

Default Description Property

https://riptutorial.com/laravel/topic/7984/eloquent--model

https://riptutorial.com/ 94

public function report(Exception $e)

public function report(Exception $e)

{

if ($e instanceof \Exception) {

// Fetch the error information we would like to

// send to the view for emailing

$error['file'] = $e->getFile();

$error['code'] = $e->getCode();

$error['line'] = $e->getLine();

$error['message'] = $e->getMessage();

$error['trace'] = $e->getTrace();

// Only send email reports on production server if(ENV('APP_ENV') ==

"production"){

#1. Queue email for sending on "exceptions_emails" queue #2. Use the

emails.exception_notif view shown below

#3. Pass the error array to the view as variable $e Mail::queueOn('exception_emails', 'emails.exception_notif',

["e" => $error],

function ($m) {

$m->subject("Laravel Error");

Chapter 25: Error Handling

Remarks

Remember to set up your application for emailing by ensuring proper configuration of
config/mail.php

Also check to make sure ENV variables are properly set.

This example is a guide and is minimal. Explore, modify and style the view as you wish. Tweak the

code to meet your needs. For example, set the recepient in your .env file

Examples

Send Error report email

Exceptions in Laravel are handled by App\Exceptions\Handler.php

This file contains two functions by default. Report & Render. We will only be using the first

The report method is used to log exceptions or send them to an external service like

BugSnag. By default, the report method simply passes the exception to the base class

where the exception is logged. However, you are free to log exceptions however you

wish.

Essentially this function just forwards the error and does nothing. Therefore, we can insert

business logic to perform operations based on the error. For this example we will be sending an

email containing the error information.

https://riptutorial.com/ 95

<?php

$action = (\Route::getCurrentRoute()) ? \Route::getCurrentRoute()->getActionName() : "n/a";

$path = (\Route::getCurrentRoute()) ? \Route::getCurrentRoute()->getPath() : "n/a";

$user = (\Auth::check()) ? \Auth::user()->name : 'no login';

?>

There was an error in your Laravel App

<hr />

<table border="1" width="100%">

<tr><th >User:</th><td>{{ $user }}</td></tr>

<tr><th >Message:</th><td>{{ $e['message'] }}</td></tr>

<tr><th >Action:</th><td>{{ $action }}</td></tr>

<tr><th >URI:</th><td>{{ $path }}</td></tr>

<tr><th >Line:</th><td>{{ $e['line'] }}</td></tr>

<tr><th >Code:</th><td>{{ $e['code'] }}</td></tr>

</table>

public function render($request, Exception $exception)

{

if ($exception instanceof ModelNotFoundException) { abort(404);

}

return parent::render($request, $exception);

}

The view for the email ("emails.exception_notif") is below

Catching application wide ModelNotFoundException

app\Exceptions\Handler.php

You can catch / handle any exception that is thrown in Laravel.

Read Error Handling online: https://riptutorial.com/laravel/topic/2858/error-handling

$m->from(ENV("MAIL_FROM"), ENV("MAIL_NAME"));

$m->to("webmaster@laravelapp.com", "Webmaster");

});

}

}

// Pass the error on to continue processing return

parent::report($e);

}

https://riptutorial.com/laravel/topic/2858/error-handling
mailto:webmaster@laravelapp.com

https://riptutorial.com/ 96

protected $listen = ['App\Events\NewUserRegistered' =>

[

'App\Listeners\SendWelcomeEmail',

],

];

protected $listen = [

\App\Events\NewUserRegistered::class => [

\App\Listeners\SendWelcomeEmail::class,

],

];

protected $listen = ['Event' =>

[

'Listner1', 'Listener2'

],

];

class NewUserRegistered extends Event

{

use SerializesModels; public

$user;

/**

* Create a new event instance.

*

* @return void

*/

public function construct(User $user)

Chapter 26: Events and Listeners

Examples

Using Event and Listeners for sending emails to a new registered user

Laravel's events allows to implement the Observer pattern. This can be used to send a welcome

email to a user whenever they register on your application.

New events and listeners can be generated using the artisan command line utility after registering

the event and their particular listener in App\Providers\EventServiceProvider class.

Alternate notation:

Now execute php artisan generate:event. This command will generate all the corresponding events and

listeners mentioned above in App\Events and App\Listeners directories respectively.

We can have multiple listeners to a single event like

NewUserRegistered is just a wrapper class for the newly registered User model:

https://riptutorial.com/ 97

class SendWelcomeEmail

{

/**

* Handle the event.

*

* @param NewUserRegistered $event

*/

public function handle(NewUserRegistered $event)

{

//send the welcome email to the user

$user = $event->user;

Mail::send('emails.welcome', ['user' => $user], function ($message) use ($user) {

$message->from('hi@yourdomain.com', 'John Doe');

$message->subject('Welcome aboard '.$user->name.'!');

$message->to($user->email);

});

}

}

event(new NewUserRegistered($user));

This Event will be handled by the SendWelcomeEmail listener:

The last step is to call/fire the event whenever a new user registers. This can be done in the

controller, command or service, wherever you implement the user registration logic:

Read Events and Listeners online: https://riptutorial.com/laravel/topic/4687/events-and-listeners

{

$this->user = $user;

}

}

https://riptutorial.com/laravel/topic/4687/events-and-listeners

https://riptutorial.com/ 98

Storage::disk('local')->put('file.txt', 'Contents');

$disk = Storage::disk('s3');

$disk = Storage::disk('local');

$exists = Storage::disk('s3')->exists('file.jpg');

if (Storage::exists('file.jpg'))

{

Chapter 27: Filesystem / Cloud Storage

Examples

Configuration

The filesystem configuration file is located at config/filesystems.php. Within this file you may configure

all of your "disks". Each disk represents a particular storage driver and storage location. Example

configurations for each supported driver is included in the configuration file. So, simply modify the

configuration to reflect your storage preferences and credentials!

Before using the S3 or Rackspace drivers, you will need to install the appropriate package via

Composer:

• Amazon S3: league/flysystem-aws-s3-v2 ~1.0

• Rackspace: league/flysystem-rackspace ~1.0

Of course, you may configure as many disks as you like, and may even have multiple disks that

use the same driver.

When using the local driver, note that all file operations are relative to the root directory defined in

your configuration file. By default, this value is set to the storage/app directory. Therefore, the following

method would store a file in storage/app/file.txt:

Basic Usage

The Storage facade may be used to interact with any of your configured disks. Alternatively, you

may type-hint the Illuminate\Contracts\Filesystem\Factory contract on any class that is resolved via the

Laravel service container.

Retrieving A Particular Disk

Determining If A File Exists

Calling Methods On The Default Disk

https://riptutorial.com/ 99

$contents = Storage::get('file.jpg');

Storage::put('file.jpg', $contents);

Storage::prepend('file.log', 'Prepended Text');

Storage::append('file.log', 'Appended Text');

Storage::delete('file.jpg');

Storage::delete(['file1.jpg', 'file2.jpg']);

Storage::copy('old/file1.jpg', 'new/file1.jpg');

Storage::move('old/file1.jpg', 'new/file1.jpg');

$size = Storage::size('file1.jpg');

$time = Storage::lastModified('file1.jpg');

$files = Storage::files($directory);

// Recursive...

$files = Storage::allFiles($directory);

Retrieving A File's Contents

Setting A File's Contents

Prepend To A File

Append To A File

Delete A File

Copy A File To A New Location

Move A File To A New Location

Get File Size

Get The Last Modification Time (UNIX)

Get All Files Within A Directory

//

}

https://riptutorial.com/ 100

$directories = Storage::directories($directory);

// Recursive...

$directories = Storage::allDirectories($directory);

Storage::makeDirectory($directory);

Storage::deleteDirectory($directory);

<?php namespace App\Providers;

use Storage;

use League\Flysystem\Filesystem;

use Dropbox\Client as DropboxClient;

use League\Flysystem\Dropbox\DropboxAdapter; use

Illuminate\Support\ServiceProvider;

class DropboxFilesystemServiceProvider extends ServiceProvider { public function boot()

{

Storage::extend('dropbox', function($app, $config)

{

$client = new DropboxClient($config['accessToken'], $config['clientIdentifier']);

return new Filesystem(new DropboxAdapter($client));

});

Get All Directories Within A Directory

Create A Directory

Delete A Directory

Custom Filesystems

Laravel's Flysystem integration provides drivers for several "drivers" out of the box; however,

Flysystem is not limited to these and has adapters for many other storage systems. You can

create a custom driver if you want to use one of these additional adapters in your Laravel

application. Don't worry, it's not too hard!

In order to set up the custom filesystem you will need to create a service provider such as

DropboxFilesystemServiceProvider. In the provider's boot method, you can inject an instance of the

Illuminate\Contracts\Filesystem\Factory contract and call the extend method of the injected instance.

Alternatively, you may use the Disk facade's extend method.

The first argument of the extend method is the name of the driver and the second is a Closure that

receives the $app and $config variables. The resolver Closure must return an instance of

League\Flysystem\Filesystem.

Note: The $config variable will already contain the values defined in

config/filesystems.php for the specified disk. Dropbox Example

https://riptutorial.com/ 101

Creating symbolic link in a web server using SSH

In Laravel documentation, a symbolic link (symlink or soft link) from public/storage to

storage/app/public should be created to make files accessible from the web.

(THIS PROCEDURE WILL CREATE SYMBOLIC LINK WITHIN THE LARAVEL PROJECT

DIRECTORY)

Here are the steps on how you can create symbolic link in your Linux web server using SSH client:

1. Connect and login to your web server using SSH client (e.g. PUTTY).

2. Link storage/app/public to public/storage using the syntax

ln -s target_path link_path

Example (in CPanel File Directory)

ln -s /home/cpanel_username/project_name/storage/app/public

/home/cpanel_sername/project_name/public/storage

(A folder named storage will be created to link path with an indicator >>> on the folder icon.)

Read Filesystem / Cloud Storage online: https://riptutorial.com/laravel/topic/3040/filesystem---

cloud-storage

}

public function register()

{

//

}

}

https://riptutorial.com/laravel/topic/3040/filesystem---cloud-storage
https://riptutorial.com/laravel/topic/3040/filesystem---cloud-storage

https://riptutorial.com/ 102

php artisan make:request StoreUserRequest

php artisan make:request UpdateUserRequest

...

public function store(App\Http\Requests\StoreRequest $request, App\User $user) {

//by type-hinting the request class, Laravel "runs" StoreRequest

//before actual method store is hit

//logic that handles storing new user

//(both email and password has to be in $fillable property of User model

$user->create($request->only(['email', 'password']));

Chapter 28: Form Request(s)

Introduction

Custom requests (or Form Requests) are useful in situations when one wants to authorize &

validate a request before hitting the controller method.

One may think of two practical uses, creating & updating a record while each action has a

different set of validation (or authorization) rules.

Using Form Requests is trivial, one has to type-hint the request class in method.

Syntax

• php artisan make:request name_of_request

Remarks

Requests are useful when separating your validation from Controller. It also allows you to check if

the request is authorized.

Examples

Creating Requests

Note: You can also consider using names like StoreUser or UpdateUser (without

Request appendix) since your FormRequests are placed in folder app/Http/Requests/.

Using Form Request

Lets say continue with User example (you may have controller with store method and update

method). To use FormRequests you use type-hinting the specific request.

https://riptutorial.com/ 103

Handling Redirects after Validation

Sometimes you may want to have some login to determine where the user gets redirected to after

submitting a form. Form Requests give a variety of ways.

By default there are 3 variables declared in the Request $redirect, $redirectRoute and

$redirectAction.

On top of those 3 variables you can override the main redirect handler getRedirectUrl(). A

sample request is given below explaining what you can do.

<?php namespace App;

use Illuminate\Foundation\Http\FormRequest as Request; class SampleRequest

extends Request {

// Redirect to the given url public

$redirect;

// Redirect to a given route public

$redirectRoute;

// Redirect to a given action public

$redirectAction;

/**

* Get the URL to redirect to on a validation error.

*

* @return string

*/

protected function getRedirectUrl()

{

// If no path is given for `url()` it will return a new instance of

`Illuminate\Routing\UrlGenerator`

// If your form is down the page for example you can redirect to a hash return url()->previous() .

'#contact';

return redirect()->back();

}

...

public function update(App\Http\Requests\UpdateRequest $request, App\User $users, $id) {

//by type-hinting the request class, Laravel "runs" UpdateRequest

//before actual method update is hit

//logic that handles updating a user

//(both email and password has to be in $fillable property of User model

$user = $users->findOrFail($id);

$user->update($request->only(['password'])); return redirect()-

>back();

}

https://riptutorial.com/ 104

Read Form Request(s) online: https://riptutorial.com/laravel/topic/6329/form-request-s-

//`url()` provides several methods you can chain such as

// Get the current URL return url()-

>current();

// Get the full URL of the current request return url()->full();

// Go back

return url()->previous();

// Or just redirect back return

redirect()->back();

}

/**

* Get the validation rules that apply to the request.

*

* @return array

*/

public function rules()

{

return [];

}

/**

* Determine if the user is authorized to make this request.

*

* @return bool

*/

public function authorize()

{

return true;

}

}

https://riptutorial.com/laravel/topic/6329/form-request-s-

https://riptutorial.com/ 105

php -v

PHP 7.0.9 (cli) (built: Aug 26 2016 06:17:04) (NTS)

Copyright (c) 1997-2016 The PHP Group

Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

composer --version

composer version 1.2.1 2016-09-12 11:27:19

composer global require "laravel/installer"

Chapter 29: Getting started with laravel-5.3

Remarks

This section provides an overview of what laravel-5.3 is, and why a developer might want to use it.

It should also mention any large subjects within laravel-5.3, and link out to the related topics. Since

the Documentation for laravel-5.3 is new, you may need to create initial versions of those related

topics.

Examples

Installing Laravel

Requirements:

You need PHP >= 5.6.4 and Composer installed on your machine. You can check version of both by using

command:

For PHP:

Output like this:

For Composer

You can run command on your terminal/CMD:

Output like this:

Laravel utilizes Composer to manage its dependencies. So, before using Laravel, make sure you

have Composer installed on your machine.

Via Laravel Installer

First, download the Laravel installer using Composer:

https://getcomposer.org/

https://riptutorial.com/ 106

laravel new blog

composer create-project --prefer-dist laravel/laravel blog

php artisan serve

Make sure to place the $HOME/.composer/vendor/bin directory (or the equivalent directory for your OS) in

your $PATH so the laravel executable can be located by your system.

Once installed, the laravel new command will create a fresh Laravel installation in the directory you

specify. For instance, laravel new blog will create a directory named blog containing a fresh Laravel

installation with all of Laravel's dependencies already installed:

Via Composer Create-Project

Alternatively, you may also install Laravel by issuing the Composer create-project command in your

terminal:

Setup

After you are complete with the Laravel installation, you will need to set permissions for the storage and

Bootstrap folders.

Note: Setting permissions is one of the most important processes to complete while

installing Laravel.

Local Development Server

If you have PHP installed locally and you would like to use PHP's built-in development server to

serve your application, you may use the serve Artisan command. This command will start a

development server at http://localhost:8000:

Open your browser request url http://localhost:8000

Server Requirements

The Laravel framework has a few system requirements. Of course, all of these requirements are

satisfied by the Laravel Homestead virtual machine, so it's highly recommended that you use

Homestead as your local Laravel development environment.

However, if you are not using Homestead, you will need to make sure your server meets the

following requirements:

• PHP >= 5.6.4

• OpenSSL PHP Extension

• PDO PHP Extension

• Mbstring PHP Extension

https://laravel.com/docs/5.3/homestead

https://riptutorial.com/ 107

php artisan serve

php artisan serve --port=8080

php artisan serve --host=example.dev

php artisan serve --host=example.dev --port=8080

Route::get('helloworld', function () { return '<h1>Hello

World</h1>';

});

• Tokenizer PHP Extension

• XML PHP Extension

Local Development Server

If you have PHP installed locally and you would like to use PHP's built-in development server to

serve your application, you may use the serve Artisan command. This command will start a

development server at http://localhost:8000:

Of course, more robust local development options are available via Homestead and Valet.

Also it's possible to use a custom port, something like 8080. You can do this with the --port option.

If you have a local domain in your hosts file, you can set the hostname. This can be done by the --

host option.

You can also run on a custom host and port, this can be done by the following command.

Hello World Example (Basic) and with using a view

The basic example

Open routes/web.php file and paste the following code in file:

here 'helloworld' will act as page name you want to access,

and if you don't want to create blade file and still want to access the page directly then you can

use laravel routing this way

now type localhost/helloworld in browser address bar and you can access page displaying Hello World.

The next step.

So you've learned how to create a very simple Hello World! page by returning a hello world

sentence. But we can make it a bit nicer!

Step 1.

https://laravel.com/docs/5.3/homestead
https://laravel.com/docs/5.3/valet

https://riptutorial.com/ 108

Route::get('helloworld', function() { return

view('helloworld');

});

<html>

<body>

<h1> Hello World! </h1>

<?php

echo "Hello PHP World!";

?>

</body>

</html>

Route::get('helloworld', function () { return '<h1>Hello

World</h1>';

});

We'll start again at our routes/web.php file now instead of using the code above we'll use the following

code:

The return value this time is not just a simple helloworld text but a view. A view in Laravel is simply

a new file. This file "helloworld" contains the HTML and maybe later on even some PHP of the

Helloworld text.

Step 2.

Now that we've adjusted our route to call on a view we are going to make the view. Laravel works

with blade.php files in views. So, in this case, our route is called helloworld. So our view will be

called helloworld.blade.php

We will be creating the new file in the resources/views directory and we will call it helloworld.blade.php

Now we'll open this new file and edit it by creating our Hello World sentence. We can add multiple

different ways to get our sentence as in the example below.

now go to your browser and type your route again like in the basic example: localhost/helloworld

you'll see your new created view with all of the contents!

Hello World Example (Basic)

Open routes file. Paste the following code in:

after going to route http://localhost/helloworld it displays Hello World. The

routes file is located /routes/web.php

Web Server Configuration for Pretty URLs

If you installed Laravel via Composer or the Laravel installer, below configuration you will need.

http://localhost/helloworld

https://riptutorial.com/ 109

Options +FollowSymLinks

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-d

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule ^ index.php [L]

location / {

try_files $uri $uri/ /index.php?$query_string;

}

Configuration for Apache Laravel includes a public/.htaccess file that is used to provide URLs

without the index.php front controller in the path. Before serving Laravel with Apache, be sure to

enable the mod_rewrite module so the .htaccess file will be honored by the server.

If the .htaccess file that ships with Laravel does not work with your Apache installation, try this

alternative:

Configuration for Nginx If you are using Nginx, the following directive in your site configuration

will direct all requests to the index.php front controller:

Of course, when using Homestead or Valet, pretty URLs will be automatically configured.

Read Getting started with laravel-5.3 online: https://riptutorial.com/laravel/topic/8602/getting-

started-with-laravel-5-3

https://laravel.com/docs/5.4/homestead
https://laravel.com/docs/5.4/valet
https://riptutorial.com/laravel/topic/8602/getting-started-with-laravel-5-3
https://riptutorial.com/laravel/topic/8602/getting-started-with-laravel-5-3

https://riptutorial.com/ 110

$array = ['username' => 'testuser'];

$array = array_add($array, 'age', 18);

['username' => 'testuser', 'age' => 18]

camel_case('hello_world');

HelloWorld

Chapter 30: Helpers

Introduction

Laravel helpers are the globally accessible functions defined by the framework. It can be directly

called and independently used anywhere within the application without needing to instantiating an

object or importing class.

There are helpers for manipulating Arrays, Paths, Strings, URLs, etc

Examples

Array methods

array_add()

This method is used to add new key value pairs to an array.

result

String methods

camel_case()

This method changes a string to camel case

result

Path mehods

Path methods helps easy access to application related paths easily from anywhere.

public_path()

This method returns the fully qualified public path of the application. which is the public directory.

https://riptutorial.com/ 111

hello.com/my/dashboard

echo url()->full();

echo url()->previous();

Urls

url()

The url function generates a fully qualified URL to the given path.

if your site is hello.com

would return

if nothing is passed to the url method it would return an instance of

Illuminate\Routing\UrlGenerator, and it could be used like this would

return current url

would return full url

would return previous url

Read Helpers online: https://riptutorial.com/laravel/topic/8827/helpers

echo url()->current();

echo url('my/dashboard');

$path = public_path();

https://riptutorial.com/laravel/topic/8827/helpers

https://riptutorial.com/ 112

composer require laravelcollective/html "~5.0"

'providers' => [

// ... Collective\Html\HtmlServiceProvider::class,

// ...

],

'aliases' => [

// ...

'Form' => Collective\Html\FormFacade::class, 'Html' =>

Collective\Html\HtmlFacade::class,

// ...

],

Chapter 31: HTML and Form Builder

Examples

Installation

HTML and Form Builder is not a core component since Laravel 5, so we need to install it

separately:

Finally in config/app.php we need to register the service provider, and the facades aliases like this:

Full docs are available on Forms & HTML

Read HTML and Form Builder online: https://riptutorial.com/laravel/topic/3672/html-and-form-

builder

https://laravelcollective.com/
https://riptutorial.com/laravel/topic/3672/html-and-form-builder
https://riptutorial.com/laravel/topic/3672/html-and-form-builder

https://riptutorial.com/ 113

$ composer create-project laravel/laravel [foldername]

$ composer create-project --prefer-dist laravel/laravel [foldername]

$ composer create-project --prefer-dist laravel/laravel 5.2.*

Chapter 32: Installation

Examples

Installation

Laravel applications are installed and managed with Composer, a popular PHP dependency

manager. There are two ways to create a new Laravel application.

Via Composer

Or

Replace [foldername] with the name of the directory you want your new Laravel application

installed to. It must not exist before installation. You may also need to add the Composer

executable to your system path.

If want to create a Laravel project using a specific version of the framework, you can provide a

version pattern, otherwise your project will use the latest available version.

If you wanted to create a project in Laravel 5.2 for example, you'd run:

Why --prefer-dist

There are two ways of downloading a package: source and dist. For stable versions Composer will use

the dist by default. The source is a version control repository. If --prefer-source is enabled, Composer will

install from source if there is one.

--prefer-dist is the opposite of --prefer-source, and tells Composer to install from dist if possible. This can

speed up installs substantially on build servers and in other use cases where you typically do not

run vendor updates. It also allows avoiding problems with Git if you do not have a proper setup.

Via the Laravel installer

Laravel provides a helpful command line utility to quickly create Laravel applications. First, install

the installer:

https://getcomposer.org/

https://riptutorial.com/ 114

laravel new [foldername]

$ php artisan serve

$ php artisan serve --port=8080

$ php artisan serve --host=192.168.0.100 --port=8080

You have to make sure that the Composer binaries folder is within your $PATH

variable to execute the Laravel installer.

First, look if it already is in your $PATH variable

echo $PATH

If everything is correct, the output should contain something like this:

Users/yourusername/.composer/vendor/bin

If not, edit your .bashrc or, if your using ZSH, your .zshrc so it contains the path to your Composer

vendor directory.

Once installed, this command will create a fresh Laravel installation in the directory you specify.

You can also use . (a dot) in place of [foldername] to create the project in the current working

directory without making a sub-directory.

Running the application

Laravel comes bundled with a PHP-based web server which can be started by running

By default, the HTTP server will use port 8000, but if the port is already in use or if you want to run

multiple Laravel applications at once, you can use the --port flag to specify a different port:

The HTTP server will use localhost as the default domain for running the application, but you can use

the --host flag to specify a different address:

Using a different server

If you prefer to use a different web server software, some configuration files are provided for you

inside the public directory of your project; .htaccess for Apache and web.config for ASP.NET. For other

software such as NGINX, you can convert the Apache configurations using various online tools.

The framework needs the web server user to have write permissions on the following directories:

$ composer global require laravel/installer

https://riptutorial.com/ 115

chown -R www-data:www-data storage bootstrap/cache chmod -R

ug+rwx storage bootstrap/cache

• /storage

• /bootstrap/cache

On *nix operating systems this can be achieved by

(where www-data is the name and group of the web server user)

The web server of your choice should be configured to serve content from your project's /public

directory, which is usually done by setting it as the document root. The rest of your project should

not be accessible through your web server.

If you set everything up properly, navigating to your website's URL should display the default

landing page of Laravel.

Requirements

The Laravel framework has the following requirements:

5.3

• PHP >= 5.6.4

• XML PHP Extension

• PDO PHP Extension

• OpenSSL PHP Extension

• Mbstring PHP Extension

• Tokenizer PHP Extension

5.1 (LTS)5.2

• PHP >= 5.5.9

• PDO PHP Extension

• Laravel 5.1 is the first version of Laravel to support PHP 7.0.

5.0

• PHP >= 5.4, PHP < 7

• OpenSSL PHP Extension

• Tokenizer PHP Extension

• Mbstring PHP Extension

• JSON PHP extension (only on PHP 5.5)

4.2

• PHP >= 5.4

• Mbstring PHP Extension

• JSON PHP extension (only on PHP 5.5)

https://riptutorial.com/ 116

$ composer create-project laravel/laravel hello-world

$ cd C:\xampp\htdocs\hello-world

$ php artisan make:controller HelloController --resource

Route::get('hello', 'HelloController@index');

<h1>Hello world!</h1>

<?php

namespace App\Http\Controllers; use

Illuminate\Http\Request; use

App\Http\Requests;

class HelloController extends Controller

{

/**

* Display a listing of the resource.

*

* @return \Illuminate\Http\Response

*/

public function index()

{

Hello World Example (Using Controller and View)

1. Create a Laravel application:

2. Navigate to the project folder, e.g.

3. Create a controller:

This will create the file app/Http/Controllers/HelloController.php. The --resource

option will generate CRUD methods for the controller, e.g. index, create, show, update.

4. Register a route to HelloController's index method. Add this line to app/Http/routes.php

(version 5.0 to 5.2) or routes/web.php (version 5.3):

To see your newly added routes, you can run $ php artisan route:list

5. Create a Blade template in the views directory:

resources/views/hello.blade.php:

6. Now we tell index method to display the hello.blade.php template:

app/Http/Controllers/HelloController.php

https://riptutorial.com/ 117

Route::get('helloworld', function () { return '<h1>Hello

World</h1>';

});

routes/web.php

routes/api.php

app/Http/routes.php

app/routes.php

You can serve your app using the following PHP Artisan Command: php artisan serve; it will show you

the address at which you can access your application (usually at http://localhost:8000 by default).

Alternatively, you may head over directly to the appropriate location in your browser; in case you

are using a server like XAMPP (either: http://localhost/hello-world/public/hello should you have

installed your Laravel instance, hello-world, directly in your xampp/htdocs directory as in: having

executed the step 1 of this Hello Word from your command line interface, pointing at your

xampp/htdocs directory).

Hello World Example (Basic)

Open routes file. Paste the following code in:

after going to route localhost/helloworld it displays Hello World. The

routes file is located:

5.3

For Web

For APIs

5.25.1 (LTS)5.0

4.2

Installation using LaraDock (Laravel Homestead for Docker)

LaraDock is a Laravel Homestead like development environment but for Docker instead of

Vagrant. https://github.com/LaraDock/laradock

return view('hello');

}

// ... other resources are listed below the index one above

http://localhost/hello-world/public/hello
https://github.com/LaraDock/laradock

https://riptutorial.com/ 118

git submodule add https://github.com/LaraDock/laradock.git

git clone https://github.com/LaraDock/laradock.git

Installation

*Requires Git and Docker

Clone the LaraDock repository:

A. If you already have a Laravel project, clone this repository on your Laravel root directory:

B. If you don't have a Laravel project, and you want to install Laravel from Docker, clone this repo

anywhere on your machine:

Basic Usage

1. Run Containers: (Make sure you are in the laradock folder before running the docker-

compose commands).

Example: Running NGINX and MySQL: docker-compose up -d nginx mysql

There are a list of available containers you can select to create your own combinations.

nginx, hhvm, php-fpm, mysql, redis, postgres, mariadb, neo4j, mongo, apache2, caddy, memcached, beanstalkd,

beanstalkd-console, workspace

2. Enter the Workspace container, to execute commands like (Artisan, Composer, PHPUnit,

Gulp, ...).

docker-compose exec workspace bash

3. If you don't have a Laravel project installed yet, follow the step to install Laravel from a

Docker container.

a. Enter the Workspace container.

b. Install Laravel. composer create-project laravel/laravel my-cool-app "5.3.*"

4. Edit the Laravel configurations. Open your Laravel's .env file and set the DB_HOST to your

mysql:

DB_HOST=mysql

5. Open your browser and visit your localhost address.

Read Installation online: https://riptutorial.com/laravel/topic/7961/installation

https://riptutorial.com/laravel/topic/7961/installation

https://riptutorial.com/ 119

composer global require "laravel/installer"

laravel new {folder name}

composer create-project laravel/laravel {folder name}

Chapter 33: Installation Guide

Remarks

This section provides an overview of what laravel-5.4 is, and why a developer might want to use it.

It should also mention any large subjects within laravel-5.4, and link out to the related topics. Since

the Documentation for laravel-5.4 is new, you may need to create initial versions of those related

topics.

Examples

Installation

Detailed instructions on getting laravel set up or installed.

composer is required for installing laravel easily.

There are 3 methods of installing laravel in your system:

1. Via Laravel Installer

Download the Laravel installer using composer

Before using composer we need to add ~/.composer/vendor/bin to PATH. After installation has finished

we can use laravel new command to create a new project in Laravel.

Example:

This command creates a new directory named as site and a fresh Laravel installation with all other

dependencies are installed in the directory.

2. Via Composer Create-Project

You can use the command in the terminal to create a new Laravel app:

3. Via Download

Download Laravel and unzip it.

1. composer install

https://getcomposer.org/download/
https://github.com/laravel/laravel/

https://riptutorial.com/ 120

cp .env.example .env

Route::get('helloworld', function () { return '<h1>Hello

World</h1>';

});

<h1>Hello, World</h1>

$> cd your_laravel_project_root_directory

$> php artisan make:controller HelloController

2. Copy .env.example to .env via teminal or manually.

3. Open .env file and set your database, email, pusher, etc. (if needed)

4. php artisan migrate (if database is setup)
5. php artisan key:generate

6. php artisan serve

7. Go to localhost:8000 to view the site

Laravel docs

Hello World Example (Basic)

Accessing pages and outputting data is fairly easy in Laravel. All of the page routes are located in

app/routes.php. There are usually a few examples to get you started, but we're going to create a new

route. Open your app/routes.php, and paste in the following code:

This tells Laravel that when someone accesses http://localhost/helloworld in a browser, it should run the

function and return the string provided.

Hello World Example With Views and Controller

Assuming we have a working laravel application running in, say, "mylaravel.com",we want our

application to show a "Hello World" message when we hit the URL http://mylaravel.com/helloworld

. It involves the creation of two files (the view and the controller) and the modification of an existing

file, the router.

The view

First off , we open a new blade view file named helloview.blade.php with the "Hello World" string. Create it

in the directory app/resources/views

The controller

Now we create a controller that will manage the display of that view with the "Hello World" string.

We'll use artisan in the command line.

That will just create a file (app/Http/Controllers/HelloController.php) containing the class that is

https://laravel.com/docs/5.4#installing-laravel
http://localhost/helloworld
http://mylaravel.com/helloworld

https://riptutorial.com/ 121

public function hello()

{

return view('helloview');

}

Route::get('/helloworld', 'HelloController@hello');

our new controller HelloController.

Edit that new file and write a new method hello that will display the view we created before.

That 'helloview' argument in the view function is just the name of the view file without the trailing

".blade.php". Laravel will know how to find it.

Now when we call the method hello of the controller HelloController it will display the message. But

how do we link that to a call to http://mylaravel.com/helloworld ? With the final step, the routing.

The router

Open the existing file app/routes/web.php (in older laravel versions app/Http/routes.php) and add this line:

which is a very self-explaining command saying to our laravel app: "When someone uses the GET

verb to access '/helloworld' in this laravel app, return the results of calling the function hello in the

HelloController controller.

Read Installation Guide online: https://riptutorial.com/laravel/topic/2187/installation-guide

http://mylaravel.com/helloworld
https://riptutorial.com/laravel/topic/2187/installation-guide

https://riptutorial.com/ 122

Chapter 34: Introduction to laravel-5.2

Introduction

Laravel is a MVC framework with bundles, migrations, and Artisan CLI. Laravel offers a robust set

of tools and an application architecture that incorporates many of the best features of frameworks

like CodeIgniter, Yii, ASP.NET MVC, Ruby on Rails, Sinatra, and others. Laravel is an Open

Source framework. It has a very rich set of features which will boost the speed of Web

Development. If you familiar with Core PHP and Advanced PHP, Laravel will make your task

easier. It will save a lot time.

Remarks

This section provides an overview of what laravel-5.1 is, and why a developer might want to use it.

It should also mention any large subjects within laravel-5.1, and link out to the related topics. Since

the Documentation for laravel-5.1 is new, you may need to create initial versions of those related

topics.

Examples

Installation or Setup

Instructions on installing Laravel 5.1 on a Linux/Mac/Unix Machine.

Before initiating the installation, check if the following requirements are met:

• PHP >= 5.5.9

• OpenSSL PHP Extension

• PDO PHP Extension

• Mbstring PHP Extension

• Tokenizer PHP Extension

Let's begin the installation:

1. Install composer. Composer Documentation

2. Run composer create-project laravel/laravel <folder-name> "5.1.*"

3. Ensure that the storage folder and the bootstrap/cache folder are writable.

4. Open the .env file and set the configuration information like database credentials, debug

status, application environment, etc.

5. Run php artisan serve and point your browser to http://localhost:8000. If everything is fine then you

should get the page

Install Laravel 5.1 Framework on Ubuntu 16.04, 14.04 & LinuxMint

https://getcomposer.org/doc/00-intro.md

https://riptutorial.com/ 123

$ sudo apt-get install python-software-properties

$ sudo add-apt-repository ppa:ondrej/php

$ sudo apt-get update

$ sudo apt-get install -y php5.6 php5.6-mcrypt php5.6-gd

$ apt-get install apache2 libapache2-mod-php5

$ apt-get install mysql-server php5.6-mysql

$ curl -sS https://getcomposer.org/installer | php

$ sudo mv composer.phar /usr/local/bin/composer

$ sudo chmod +x /usr/local/bin/composer

$ cd /var/www

$ git clone https://github.com/laravel/laravel.git

$ cd /var/www/laravel

$ sudo composer install

$ chown -R www-data.www-data /var/www/laravel

$ chmod -R 755 /var/www/laravel

$ chmod -R 777 /var/www/laravel/app/storage

Step 1 – Install LAMP

To start with Laravel, we first need to set up a running LAMP server. If you have already running

LAMP stack skip this step else use followings commands to set up lamp on Ubuntu system.

Install PHP 5.6

Install Apache2

Install MySQL

Step 2 – Install Composer

Composer is required for installing Laravel dependencies. So use below commands to download

and use as a command in our system.

Step 3 – Install Laravel

To download latest version of Laravel, Use below command to clone master repo of laravel from

github.

Navigate to Laravel code directory and use composer to install all dependencies required for

Laravel framework.

Dependencies installation will take some time. After than set proper permissions on files.

https://riptutorial.com/ 124

$ php artisan key:generate

Application key [uOHTNu3Au1Kt7Uloyr2Py9blU0J5XQ75] set successfully.

'key' => env('APP_KEY', 'uOHTNu3Au1Kt7Uloyr2Py9blU0J5XQ75'),

'cipher' => 'AES-256-CBC',

$ vim /etc/apache2/sites-available/laravel.example.com.conf

<VirtualHost *:80>

ServerName laravel.example.com DocumentRoot

/var/www/laravel/public

<Directory />

Options FollowSymLinks

AllowOverride None

</Directory>

<Directory /var/www/laravel>

AllowOverride All

</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log LogLevel

warn

CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

$ a2ensite laravel.example.com

$ sudo service apache2 reload

Step 4 – Set Encryption Key

Now set the 32 bit long random number encryption key, which used by the Illuminate encrypter

service.

Now edit config/app.php configuration file and update above generated application key as followings.

Also make sure cipher is set properly.

Step 5 – Create Apache VirtualHost

Now add a Virtual Host in your Apache configuration file to access Laravel framework from web

browser. Create Apache configuration file under /etc/apache2/sites-available/ directory and add below

content.

This is the Virtual Host file structure.

Finally lets enable website and reload Apache service using below command.

Step 6 – Access Laravel

At this point you have successfully completed Laravel 5 PHP framework on your system. Now

https://riptutorial.com/ 125

$ sudo echo "127.0.0.1 laravel.example.com" >> /etc/hosts

make host file entry to access your Laravel application in web browser. Change 127.0.0.1 with your

server ip and laravel.example.com with your domain name configured in Apache.

And access http://laravel.example.com in your favorite web browser as below.

Read Introduction to laravel-5.2 online: https://riptutorial.com/laravel/topic/1987/introduction-to-

laravel-5-2

http://laravel.example.com/
https://riptutorial.com/laravel/topic/1987/introduction-to-laravel-5-2
https://riptutorial.com/laravel/topic/1987/introduction-to-laravel-5-2

https://riptutorial.com/ 126

@foreach($variables as $variable)

// Within here the `$loop` variable becomes available

// Current index, 0 based

$loop->index;

// Current iteration, 1 based

$loop->iteration;

// How many iterations are left for the loop to be complete

$loop->remaining;

// Get the amount of items in the loop

$loop->count;

// Check to see if it's the first iteration ...

$loop->first;

// ... Or last iteration

$loop->last;

//Depth of the loop, ie if a loop within a loop the depth would be 2, 1 based counting.

$loop->depth;

// Get's the parent `$loop` if the loop is nested, else null

$loop->parent;

@endforeach

Chapter 35: Introduction to laravel-5.3

Introduction

New features, improvements and changes from Laravel 5.2 to 5.3

Examples

The $loop variable

It is known for a while that dealing with loops in Blade has been limited, as of 5.3 there is a

variable called $loop available

Read Introduction to laravel-5.3 online: https://riptutorial.com/laravel/topic/9231/introduction-to-

laravel-5-3

https://riptutorial.com/laravel/topic/9231/introduction-to-laravel-5-3
https://riptutorial.com/laravel/topic/9231/introduction-to-laravel-5-3

https://riptutorial.com/ 127

cd laradock

cp .env-example .env

docker-compose up -d nginx mysql redis beanstalkd

Chapter 36: Laravel Docker

Introduction

A challenge that every developer and development team faces is environment consistency.

Laravel is one of the most popular PHP frameworks today. DDocker, on the other hand, is a

virtualization method that eliminates “works on my machine” issues when cooperating on code

with other developers. The two together create a fusion of useful and powerful. Although both of

them do very different things, they can both be combined to create amazing products.

Examples

Using Laradock

Laradock is a project that provides a ready to go contains tailored for Laravel use.

Download or clone Laradock in your project's root folder:

Change directory into Laradock and generate the .env file needed to run your configurations:

You are now ready to run docker. The first time you run the container it will download all the need

packages from the internet.

Now you can open your browser and view your project on http://localhost. For

the full Laradock documentation and configuration click here.

Read Laravel Docker online: https://riptutorial.com/laravel/topic/10034/laravel-docker

git clone https://github.com/Laradock/laradock.git

http://localhost/
http://laradock.io/
https://riptutorial.com/laravel/topic/10034/laravel-docker

https://riptutorial.com/ 128

Chapter 37: Laravel Packages

Examples

laravel-ide-helper

This package generates a file that your IDE understands, so it can provide accurate

autocompletion. Generation is done based on the files in your project.

Read more about this here

laravel-datatables

This package is created to handle server-side works of DataTables jQuery Plugin via AJAX option

by using Eloquent ORM, Fluent Query Builder or Collection.

Read more about this here or here

Intervention Image

Intervention Image is an open source PHP image handling and manipulation library. It provides an

easier and expressive way to create, edit, and compose images and supports currently the two

most common image processing libraries GD Library and Imagick.

Read more about this here

Laravel generator

Get your APIs and Admin Panel ready in minutes.Laravel Generator to generate CRUD, APIs,

Test Cases and Swagger Documentation

Read more about this here

Laravel Socialite

Laravel Socialite provides an expressive, fluent interface to OAuth authentication with Facebook,

Twitter, Google, LinkedIn, GitHub and Bitbucket. It handles almost all of the boilerplate social

authentication code you are dreading writing.

Read more about this here

Official Packages

Cashier

Laravel Cashier provides an expressive, fluent interface to Stripe's and Braintree's subscription

https://github.com/barryvdh/laravel-ide-helper
https://github.com/yajra/laravel-datatables
https://datatables.yajrabox.com/
http://image.intervention.io/
https://github.com/InfyOmLabs/laravel-generator
https://github.com/laravel/socialite
https://stripe.com/au
https://www.braintreepayments.com/

https://riptutorial.com/ 129

billing services. It handles almost all of the boilerplate subscription billing code you are dreading

writing. In addition to basic subscription management, Cashier can handle coupons, swapping

subscription, subscription "quantities", cancellation grace periods, and even generate invoice

PDFs.

More about this package can be found here.

Envoy

Laravel Envoy provides a clean, minimal syntax for defining common tasks you run on your

remote servers. Using Blade style syntax, you can easily setup tasks for deployment, Artisan

commands, and more. Currently, Envoy only supports the Mac and Linux operating systems.

This package can be found on Github.

Passport

Laravel already makes it easy to perform authentication via traditional login forms, but what about

APIs? APIs typically use tokens to authenticate users and do not maintain session state between

requests. Laravel makes API authentication a breeze using Laravel Passport, which provides a full

OAuth2 server implementation for your Laravel application in a matter of minutes.

More about this package can be found here.

Scout

Laravel Scout provides a simple, driver-based solution for adding full-text search to your Eloquent

models. Using model observers, Scout will automatically keep your search indexes in sync with

your Eloquent records.

Currently, Scout ships with an Algolia driver; however, writing custom drivers is simple and you are

free to extend Scout with your own search implementations.

More about this package can be found here.

Socialite

Laravel Socialite provides an expressive, fluent interface to OAuth authentication with Facebook,

Twitter, Google, LinkedIn, GitHub and Bitbucket. It handles almost all of the boilerplate social

authentication code you are dreading writing.

This package can be found on Github.

Read Laravel Packages online: https://riptutorial.com/laravel/topic/8001/laravel-packages

https://laravel.com/docs/5.4/billing
https://github.com/laravel/envoy
https://laravel.com/docs/5.4/passport
https://laravel.com/docs/5.4/scout
https://github.com/laravel/socialite
https://riptutorial.com/laravel/topic/8001/laravel-packages

https://riptutorial.com/ 130

$ cd path/to/your/document/root

$ composer create-project laravel/lumen=~5.2.0 --prefer-dist lumen-project

$ cd lumen-project

Lumen (5.4.4) (Laravel Components 5.4.*)

$app->get('/', function () use($app) { return $app-

>version();

});

Chapter 38: lumen framework

Examples

Getting started with Lumen

The following example demonstrates using Lumen in WAMP / MAMP / LAMP environments.

To work with Lumen you need to setup couple of things first.

• Composer

• PHPUnit

• git (not required but strongly recommended)

Assuming you have all these three components installed (at least you need composer), first go to

your web servers document root using terminal. MacOSX and Linux comes with a great terminal.

You can use git bash (which is actually mingw32 or mingw64) in windows.

Then you need to use compose to install and create Lumen project. Run the following command.

lumen-app in the code above is the folder name. You can change it as you like. Now you need to setup

your virtual host to point to the path/to/document/root/lumen-project/public folder. Say you mapped http://lumen-

project.local to this folder. Now if you go to this url you should see a message like following (depending

on your installed Lumen version, in my case it was 5.4.4)-

If you open lumen-project/routers/web.php file there you should see the following-

Congratulations! Now you have a working Lumen installation. No you can extend this app to listen to

your custom endpoints.

Read lumen framework online: https://riptutorial.com/laravel/topic/9221/lumen-framework

https://lumen.laravel.com/
https://getcomposer.org/
https://phpunit.de/
https://git-scm.com/
http://lumen-project.local/
http://lumen-project.local/
https://riptutorial.com/laravel/topic/9221/lumen-framework

https://riptutorial.com/ 131

public function boot()

{

HasMany::macro('toHasOne', function() { return new

HasOne(

$this->query,

$this->parent,

$this->foreignKey,

$this->localKey

);

});

}

public function allPurchased()

{

return $this->hasMany(Purchased::class);

}

public function lastPurchased()

{

return $this->allPurchased()->latest()->toHasOne();

}

Chapter 39: Macros In Eloquent Relationship

Introduction

We have new features for Eloquent Relationship in Laravel version 5.4.8. We can fetch a single

instance of a hasMany (it is just one example) relationship by define it at on place and it will works

for all relationship

Examples

We can fetch one instance of hasMany relationship

In our AppServiceProvider.php

Suppose we have shop modal and we are getting the list of products which has purchased.

Suppose we have allPurchased relationship for Shop modal

Read Macros In Eloquent Relationship online: https://riptutorial.com/laravel/topic/8998/macros-in-

eloquent-relationship

https://riptutorial.com/laravel/topic/8998/macros-in-eloquent-relationship
https://riptutorial.com/laravel/topic/8998/macros-in-eloquent-relationship

https://riptutorial.com/ 132

MAIL_DRIVER=smtp

MAIL_HOST=smtp.gmail.com

MAIL_PORT=587

MAIL_USERNAME=yourEmail@gmail.com

MAIL_PASSWORD=yourPassword

MAIL_ENCRYPTION=tls

$variable = 'Hello world!'; // A variable which can be use inside email blade template. Mail::send('your.blade.file', ['variable' =>

$variable], function ($message) {

$message->from('john@doe.com');

$message->sender('john@doe.com');

$message->to(foo@bar.com);

$message->subject('Hello World');

});

Chapter 40: Mail

Examples

Basic example

You can configure Mail by just adding/changing these lines in the app's .ENV file with your email

provider login details, for example for using it with gmail you can use:

Then you can start sending emails using Mail, for example:

Read Mail online: https://riptutorial.com/laravel/topic/8014/mail

mailto:MAIL_USERNAME%3DyourEmail@gmail.com
https://riptutorial.com/laravel/topic/8014/mail

https://riptutorial.com/ 133

class AuthenticationMiddleware

{

//this method will execute when the middleware will be triggered public function handle (

$request, Closure $next)

{

if (! Auth::user())

{

return redirect('login');

}

return $next($request);

}

}

protected $middleware = [

\Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode::class,

\App\Http\Middleware\AuthenticationMiddleware::class

];

//register the middleware as a 'route middleware' giving it the name of 'custom_auth' protected $routeMiddleware = [

'custom_auth' => \App\Http\Middleware\AuthenticationMiddleware::class

];

Chapter 41: Middleware

Introduction

Middleware are classes, that can be assigned to one or more route, and are used to make actions

in the early or final phases of the request cycle. We can think of them as a series of layers an

HTTP request has to pass through while it's executed

Remarks

A "Before" middleware will executes before the controller action code; while a "After" middleware

executes after the request is handled by the application

Examples

Defining a Middleware

To define a new middleware we have to create the middleware class:

Then we have to register the middleware: if the middleware should be bind to all the routes of the

application, we should add it to the middleware property of app/Http/Kernel.php:

while if we only want to associate the middleware to some of the routes, we can add it to
$routeMiddleware

https://riptutorial.com/ 134

//bind the middleware to the admin_page route, so that it will be executed for that route Route::get('admin_page',

'AdminController@index')->middleware('custom_auth');

<?php

namespace App\Http\Middleware; use

Closure;

class BeforeMiddleware

{

public function handle($request, Closure $next)

{

// Perform action

return $next($request);

}

}

<?php

namespace App\Http\Middleware; use

Closure;

class AfterMiddleware

{

public function handle($request, Closure $next)

{

$response = $next($request);

// Perform action return

$response;

}

}

and then bind it to the single routes like this:

Before vs. After Middleware

An example of "before" middleware would be as follows:

while "after" middleware would look like this:

The key difference is in how the $request parameter is handled. If actions are performed before

$next($request) that will happen before the controller code is executed while calling

$next($request) first will lead to the actions being performed after the controller code is executed.

Route Middleware

Any middleware registered as routeMiddleware in app/Http/Kernel.php can be assigned to a route. There are a

few different ways to assign middleware, but they all do the same.

https://riptutorial.com/ 135

use App\Http\Middleware\CheckAdmin;

Route::get('/admin', 'AdminController@index')->middleware(CheckAdmin::class);

In all the examples above, you can also pass fully qualified class names as middleware,

regardless if it's been registered as a route middleware.

Read Middleware online: https://riptutorial.com/laravel/topic/3419/middleware

Route::get('/admin', 'AdminController@index')->middleware('auth', 'admin'); Route::get('admin/profile', ['using' =>

'AdminController@index', 'middleware' => 'auth']); Route::get('admin/profile', ['using' => 'AdminController@index', 'middleware' =>

['auth', 'admin']);

https://riptutorial.com/laravel/topic/3419/middleware

https://riptutorial.com/ 136

<?php

return array(

'default' => 'mysql', 'connections'

=> array(

Our primary database connection 'mysql' =>

array(

'driver' => 'mysql', 'host'

 => 'host1', 'database'

 => 'database1',

'username' => 'user1', 'password'

 => 'pass1' 'charset'

 => 'utf8',

'collation' => 'utf8_unicode_ci', 'prefix' => '',

),

Our secondary database connection 'mysql2' =>

array(

Chapter 42: Multiple DB Connections in

Laravel

Examples

Initial Steps

Multiple database connections, of any type, can be defined inside the database configuration file

(likely app/config/database.php). For instance, to pull data from 2 MySQL databases define them both

separately:

 'driver' => 'mysql',

'host' => 'host2',

'database' => 'database2',

'username' => 'user2',

'password' => 'pass2'

'charset' => 'utf8',

'collation' => 'utf8_unicode_ci',

'prefix' => '',
),

),

);

The default connection is still set to mysql. This means unless otherwise specified, the application

uses the mysql connection.

Using Schema builder

Within the Schema Builder, use the Schema facade with any connection. Run the connection()

method to specify which connection to use:

https://riptutorial.com/ 137

$users = DB::connection('mysql2')->select(...);

<?php

class SomeModel extends Eloquent { protected

$connection = 'mysql2';

}

<?php

class SomeController extends BaseController { public function

someMethod()

{

$someModel = new SomeModel;

$someModel->setConnection('mysql2');

$something = $someModel->find(1); return

$something;

}

}

$users = DB::connection('foo')->select(...);

Using DB query builder

Similar to Schema Builder, define a connection on the Query Builder:

Using Eloquent

There are multiple ways to define which connection to use in the Eloquent models. One way is to

set the $connection variable in the model:

The connection can also be defined at runtime via the setConnection method.

From Laravel Documentation

Each individual connection can be accessed via the connection method on the DB facade, even

when there are multiple connections defined. The name passed to the connection method should

correspond to one of the connections listed in the config/database.php configuration file:

The raw can also be accessed, underlying PDO instance using the getPdo method on a

Schema::connection('mysql2')->create('some_table', function($table)

{

$table->increments('id'):

});

https://laravel.com/docs/5.3/database#accessing-connections
https://laravel.com/docs/5.4/eloquent#basic-usage
https://github.com/laravel/framework/blob/master/src/Illuminate/Database/Eloquent/Model.php#L28

https://riptutorial.com/ 138

$pdo = DB::connection()->getPdo();

connection instance:

https://laravel.com/docs/5.4/database#using-multiple-database-connections

Read Multiple DB Connections in Laravel online: https://riptutorial.com/laravel/topic/9605/multiple-

db-connections-in-laravel

https://laravel.com/docs/5.4/database#using-multiple-database-connections
https://riptutorial.com/laravel/topic/9605/multiple-db-connections-in-laravel
https://riptutorial.com/laravel/topic/9605/multiple-db-connections-in-laravel

https://riptutorial.com/ 139

$file = $request->file('file_upload');

$sampleName = 'UserUpload';

$destination = app_path() . '/myStorage/';

$fileName = $sampleName . '-' . date('Y-m-d-H:i:s') . '.' .

$file->getClientOriginalExtension();

$file->move($destination, $fileName);

$filename = $sampleName . '-' . date('Y-m-d-H_i_s') . '.' . $file-

>getClientOriginalExtension(); //ex output UserUpload-2016-02-18-11_25_43.xlsx

Chapter 43: Naming Files when uploading

with Laravel on Windows

Parameters

Param/Function Description

file-upload name of the file <input> field

$sampleName

could also be dynamically generated string or the name of the

file uploaded by the user

app_path()

is Laravel helper to provide the absolute path to the

application

getCLientOriginalExtension()

Laravel wrapper to fetch the extension of the file uploaded by

the user as it was on the user machine

Examples

Generating timestamped file names for files uploaded by users.

Below won't work on a Windows machine

It will throw an error like "Could no move file to /path..."

Why? - This works perfectly on a Ubuntu server

The reason is that on Windows colon ':' is not allowed in a filename where as it is allowed on linux.

This is such a small thing that we may not notice it upfront and keep wondering that why a code

which is running well on Ubuntu (Linux) is not working?

Our first hunch would be to check the file permissions and things like that but we may not notice

that colon ':' is the culprit here.

So in order to upload files on Windows, Do not use colon':' while generating timestamped

filenames, instead do something like below:

https://riptutorial.com/ 140

Read Naming Files when uploading with Laravel on Windows online:

https://riptutorial.com/laravel/topic/2629/naming-files-when-uploading-with-laravel-on-windows

OR

$filename = $sampleName . '-' .date('Y-m-d H i s') . '.' . $file-

>getClientOriginalExtension(); //ex output UserUpload-2016-02-18 11 25 43.xlsx

OR

$filename = $sampleName . '-'.date('Y-m-d_g-i-A').'.' . $file->getClientOriginalExtension();

//ex output UserUpload-2016-02-18_11-25-AM.xlsx

https://riptutorial.com/laravel/topic/2629/naming-files-when-uploading-with-laravel-on-windows

https://riptutorial.com/ 141

<?php

namespace App\Observers;

/**

* Observes the Users model

*/

class UserObserver

{

/**

* Function will be triggerd when a user is updated

*

* @param Users $model

*/

public function updated($model)

{

// execute your own code

}

}

<?php

Chapter 44: Observer

Examples

Creating an observer

Observers are used for listening to livecycle callbacks of a certain model in Laravel.

These listeners may listen to any of the following actions:

• creating

• created

• updating

• updated

• saving

• saved

• deleting

• deleted

• restoring

• restored

Here is an example of an observer.

UserObserver

As shown in the user observer, we listen to the updated action, however before this class actually

listens to the user model we first need to register it inside the EventServiceProvider.

EventServiceProvider

https://riptutorial.com/ 142

Now that we have registered our observer, the updated function will be called every time after

saving the user model.

Read Observer online: https://riptutorial.com/laravel/topic/7128/observer

namespace App\Providers;

use Illuminate\Contracts\Events\Dispatcher as DispatcherContract;

use Illuminate\Foundation\Support\Providers\EventServiceProvider as ServiceProvider;

use App\Models\Users;

use App\Observers\UserObserver;

/**

* Event service provider class

*/

class EventServiceProvider extends ServiceProvider

{

/**

* Boot function

*

* @param DispatcherContract $events

*/

public function boot(DispatcherContract $events)

{

parent::boot($events);

// In this case we have a User model that we want to observe

// We tell Laravel that the observer for the user model is the UserObserver Users::observe(new

UserObserver());

}

}

https://riptutorial.com/laravel/topic/7128/observer

https://riptutorial.com/ 143

<?php

namespace App\Http\Controllers; use DB;

use App\Http\Controllers\Controller;

class UserController extends Controller

{

/**

* Show all of the users for the application.

*

* @return Response

*/

public function index()

{

$users = DB::table('users')->paginate(10);

return view('user.index', ['users' => $users]);

}

}

Chapter 45: Pagination

Examples

Pagination in Laravel

In other frameworks pagination is headache. Laravel makes it breeze, it can generate pagination

by adding few lines of code in Controller and View.

Basic Usage

There are many ways to paginate items, but the simplest one is using the paginate method on

query builder or an Eloquent query. Laravel out of the box take care of setting limit and offset

based on the current page being viewed by user. By default, the current page is detected by the

value of ?page query string argument on the HTTP request. And for sure, this value is detected by

Laravel automatically and insert into links generated by paginator.

Now let's say we want to call the paginate method on query. In our example the passed argument to

paginate is the number of items you would like to display "per page". In our case, let say we want

to display 10 items per page.

Note: Currently, pagination operations that use a groupBy statement cannot be executed

efficiently by Laravel. If you need to use a groupBy with a paginated result set, it is

recommended that you query the database and create a paginator manually.

Simple Pagination

Let say you just want to display Next and Previous links on your pagination view. Laravel provides

you this option by using simplePaginate method.

https://laravel.com/docs/5.2/eloquent

https://riptutorial.com/ 144

<div class="container"> @foreach ($users as

$user)

{{ $user->name }}

@endforeach

</div>

{{ $users->links() }}

{{ $paginator->links('view.name') }}

php artisan vendor:publish --tag=laravel-pagination

Displaying Results In A View

Now lets display the pagination in view. Actually when you call the paginate or simplePaginate methods on

Eloquent query, you receive a paginator instance. When paginate method is called, you receive an

instance of Illuminate\Pagination\LengthAwarePaginator, while when you call simplePaginate method, you receive

an instance of Illuminate\Pagination\Paginator. These instances / objects comes with several methods that

explaines the result set. Moreover, in addition to these helpers methods, the paginator instances

are iterators and can be looped as an array.

Once you received the results, you can easily render the page links using blade

The links method will automatically render the links to other pages in result set. Each of these links

will contain the specific page number i.e ?page query string variable. The HTML generated by the

links method is perfectly compatible with the Bootstrap CSS framework.

Changing pagination views

While using laravel pagination you are free to use your own custom views.So,when calling the

links method on a paginator instance, pass the view name as the first argument to the method like

:

or

You can customize the pagination views is by exporting them to your resources/views/vendor

directory using the vendor:publish command:

This command will place the views in the resources/views/vendor/pagination directory. The default.blade.php file

within this directory corresponds to the default pagination view. Edit this file to modify the HTML of

pagination.

Read Pagination online: https://riptutorial.com/laravel/topic/2359/pagination

$users = DB::table('users')->simplePaginate(10);

http://getbootstrap.com/
https://riptutorial.com/laravel/topic/2359/pagination

https://riptutorial.com/ 145

$ chmod -R 777 ./storage ./bootstrap

$ sudo chmod -R 777 ./storage ./bootstrap

xampp\htdocs\laravel\app\storage needs to be writable

sudo chown -R www-data:www-data /path/to/your/root/directory

Chapter 46: Permissions for storage

Introduction

Laravel requires some folders to be writable for the web server user.

Examples

Example

We also need to set correct permissions for storage files in the server. So, we need to give a write

permission in the storage directory as follows:

or you may use

For windows

Make sure you are an admin user on that computer with writeable access

The NORMAL way to set permissions is to have your files owned by the webserver:

Read Permissions for storage online: https://riptutorial.com/laravel/topic/9797/permissions-for-

storage

https://riptutorial.com/laravel/topic/9797/permissions-for-storage
https://riptutorial.com/laravel/topic/9797/permissions-for-storage

https://riptutorial.com/ 146

php artisan make:policy PostPolicy

Chapter 47: Policies

Examples

Creating Policies

Since defining all of the authorization logic in the AuthServiceProvider could become cumbersome in

large applications, Laravel allows you to split your authorization logic into "Policy" classes.

Policies are plain PHP classes that group authorization logic based on the resource they

authorize.

You may generate a policy using the make:policy artisan command. The generated policy will be

placed in the app/Policies directory:

Read Policies online: https://riptutorial.com/laravel/topic/7344/policies

https://riptutorial.com/laravel/topic/7344/policies

https://riptutorial.com/ 147

php artisan queue:table php

artisan migrate

Chapter 48: Queues

Introduction

Queues allow your application to reserve bits of work that are time consuming to be handled by a

background process.

Examples

Use-cases

For example, if you are sending an email to a customer after starting a task, it's best to

immediately redirect the user to the next page while queuing the email to be sent in the

background. This will speed up the load time for the next page, since sending an email can

sometimes take several seconds or longer.

Another example would be updating an inventory system after a customer checks out with their

order. Rather than waiting for the API calls to complete, which may take several seconds, you can

immediately redirect user to the checkout success page while queuing the API calls to happen in

the background.

Queue Driver Configuration

Each of Laravel's queue drivers are configured from the config/queue.php file. A queue driver is the

handler for managing how to run a queued job, identifying whether the jobs succeeded or failed,

and trying the job again if configured to do so.

Out of the box, Laravel supports the following queue drivers:

sync

Sync, or synchronous, is the default queue driver which runs a queued job within your existing

process. With this driver enabled, you effectively have no queue as the queued job runs

immediately. This is useful for local or testing purposes, but clearly not recommended for

production as it removes the performance benefit from setting up your queue.

database

This driver stores queued jobs in the database. Before enabling this driver, you will need to create

database tables to store your queued and failed jobs:

sqs

https://riptutorial.com/ 148

This queue driver uses Amazon's Simple Queue Service to manage queued jobs. Before enabling

this job you must install the following composer package: aws/aws-sdk-php ~3.0

Also note that if you plan to use delays for queued jobs, Amazon SQS only supports a maximum

delay of 15 minutes.

iron

This queue drivers uses Iron to manage queued jobs.

redis

This queue driver uses an instance of Redis to manage queued jobs. Before using this queue

driver, you will need to configure a copy of Redis and install the following composer dependency:
predis/predis ~1.0

beanstalkd

This queue driver uses an instance of Beanstalk to manage queued jobs. Before using this queue

driver, you will need to configure a copy of Beanstalk and install the following composer

dependency: pda/pheanstalk ~3.0

null

Specifying null as your queue driver will discard any queued jobs.

Read Queues online: https://riptutorial.com/laravel/topic/2651/queues

https://aws.amazon.com/sqs/
https://www.iron.io/
http://redis.io/
http://kr.github.io/beanstalkd/
https://riptutorial.com/laravel/topic/2651/queues

https://riptutorial.com/ 149

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)/$ /$1 [L,R=301]

RewriteCond %{REQUEST_URI} !(\.css|\.js|\.png|\.jpg|\.gif|robots\.txt)$ [NC] RewriteCond

%{REQUEST_FILENAME} !-d

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule ^ index.php [L]

RewriteCond %{REQUEST_FILENAME} !-d RewriteCond

%{REQUEST_FILENAME} !-f RewriteCond

%{REQUEST_URI} !^/public/

RewriteRule ^(css|js|images)/(.*)$ public/$1/$2 [L,NC]

Chapter 49: Remove public from URL in

laravel

Introduction

How to remove public from URL in Laravel, there are many answers on internet but the easiest way

is described below

Examples

How to do that?

Follow these steps to remove public from the url

1. Copy .htaccess file from /public directory to Laravel/project root folder.

2. Rename the server.php in the Laravel/project root folder to index.php.

Cheers you will be good now.

Please Note: It is tested on Laravel 4.2, Laravel 5.1, Laravel 5.2, Laravel 5.3.

I think this is the easiest way to remove public from the url.

Remove the public from url

1. Renaming the server.php to index.php

2. Copy the .htaccess from public folder to root folder

3. Changing .htaccess a bit as follows for statics:

Sometimes I've use this method for removing public form url.

Read Remove public from URL in laravel online: https://riptutorial.com/laravel/topic/9786/remove-

public-from-url-in-laravel

https://riptutorial.com/laravel/topic/9786/remove-public-from-url-in-laravel
https://riptutorial.com/laravel/topic/9786/remove-public-from-url-in-laravel

https://riptutorial.com/ 150

<?php

namespace App\Http\Controllers; use

Illuminate\Http\Request;

class UserController extends Controller

{

public function store(Request $request)

{

// Returns the username value

$name = $request->input('username');

// Returns the username value

$name = $request->username;

// Returns the username value

$name = request('username');

// Returns the username value again

$name = request()->username;

}

}

$name = $request->input('username', 'John Doe');

Chapter 50: Requests

Examples

Getting input

The primary way of getting input would be from injecting the Illuminate\Http\Request into your controller,

after that there are numerous ways of accessing the data, 4 of which are in the example below.

When using the input function it is also possible to add a default value for when the request input is

not available

Read Requests online: https://riptutorial.com/laravel/topic/3076/requests

https://riptutorial.com/laravel/topic/3076/requests

https://riptutorial.com/ 151

<?php

namespace App\Http\Controllers;

/* Here how we illuminate the request class in controller */ use

Illuminate\Http\Request;

use Illuminate\Routing\Controller; class PostController

extends Controller

{

/**

* Store a new post.

*

* @param Request $request

* @return Response

*/

public function store(Request $request)

{

$name = $request->input('post_title');

/*

* so typecasting Request class in our method like above avails the

* HTTP GET/POST/PUT etc method params in the controller to use and

* manipulate

*/

}

}

Route::put('post/{id}', 'PostController@update');

Chapter 51: Requests

Examples

Obtain an Instance of HTTP Request

To obtain an instance of an HTTP Request, class Illuminate\Http\Request need to be type hint either in

the constructor or the method of the controller.

Example code:

Request Instance with other Parameters from routes in controller method

Sometimes we need to accept route params as well as access the HTTP Request params. We

can still type hint the Requests class in laravel controller and achieve that as explained below

E.g. We have a route that update a certain post like this (passing post id i route)

Also since user have edited other edit form fields, so that will be available in HTTP Request

Here is how to access both in our method

https://riptutorial.com/ 152

Read Requests online: https://riptutorial.com/laravel/topic/4929/requests

public function update(Request $request,$id){

//This way we have $id param from route and $request as an HTTP Request object

}

https://riptutorial.com/laravel/topic/4929/requests

https://riptutorial.com/ 153

Route::get('api/users/{user}', function (App\User $user) { return $user->email;

});

Route::get('api/useractions/{useraction}', function (App\UserAction $useraction) { return $useraction->description;

});

public function boot()

{

parent::boot();

Route::model('user', App\User::class);

}

$router->get('profile/{user}', function(App\User $user) {

});

Chapter 52: Route Model Binding

Examples

Implicit Binding

Laravel automatically resolves Eloquent models defined in routes or controller actions whose

variable names match a route segment name. For example:

In this example, since the Eloquent $user variable defined on the route matches the {user}

segment in the route's URI, Laravel will automatically inject the model instance that has an ID

matching the corresponding value from the request URI. If a matching model instance is not found

in the database, a 404 HTTP response will automatically be generated.

If the model's table name is composed from multiple words, to make the implicit model binding

working the input variable should be all lowercase;

For example, if the user can do some kind of action, and we want to access this action, the route

will be:

Explicit Binding

To register an explicit binding, use the router's model method to specify the class for a given

parameter. You should define your explicit model bindings in the boot method of the

RouteServiceProvider class

Next, we can define a route that contains {user} parameter.

Since we have bound all {user} parameters to the App\User model, a User instance will be injected

https://riptutorial.com/ 154

into the route. So, for example, a request to profile/1 will inject the User instance from the database

which has an ID of 1.

If a matching model instance is not found in the database, a 404 HTTP response will be

automatically generated.

Read Route Model Binding online: https://riptutorial.com/laravel/topic/7098/route-model-binding

https://riptutorial.com/laravel/topic/7098/route-model-binding

https://riptutorial.com/ 155

Route::get('/', function() { return

view('home');

});

Route::post('submit', function() { return

Input::all();

});

//or

Route::post('submit', function(\Illuminate\Http\Request $request) { return $request->all();

});

Route::get('login', 'LoginController@index');

Route::match(['GET', 'POST'], '/', 'LoginController@index');

Chapter 53: Routing

Examples

Basic Routing

Routing defines a map between HTTP methods and URIs on one side, and actions on the other.

Routes are normally written in the app/Http/routes.php file.

In its simplest form, a route is defined by calling the corresponding HTTP method on the Route

facade, passing as parameters a string that matches the URI (relative to the application root), and

a callback.

For instance: a route to the root URI of the site that returns a view home looks like this:

A route for a post request which simply echoes the post variables:

Routes pointing to a Controller method

Instead of defining the callback inline, the route can refer to a controller method in

[ControllerClassName@Method] syntax:

A route for multiple verbs

The match method can be used to match an array of HTTP methods for a given route:

Also you can use all to match any HTTP method for a given route:

https://riptutorial.com/ 156

Route::group([

'namespace' => 'Admin',

'middleware' => 'admin', 'prefix' =>

'admin'

], function () {

// something.dev/admin

// 'App\Http\Controllers\Admin\IndexController'

// Uses admin middleware

Route::get('/', ['uses' => 'IndexController@index']);

// something.dev/admin/logs

// 'App\Http\Controllers\Admin\LogsController'

// Uses admin middleware

Route::get('/logs', ['uses' => 'LogsController@index']);

});

Route::get('login', ['as' => 'loginPage', 'uses' => 'LoginController@index']);

Route::get('login', 'LoginController@index')->name('loginPage');

Route Groups

Routes can be grouped to avoid code repetition.

Let's say all URIs with a prefix of /admin use a certain middleware called admin and they all live in the

App\Http\Controllers\Admin namespace.

A clean way of representing this using Route Groups is as follows:

Named Route

Named routes are used to generate a URL or redirects to a specific route. The advantage of using

a named route is, if we change the URI of a route in future, we wouldn't need to change the URL

or redirects pointing to that route if we are using a named route. But if the links were generated

using the url [eg. url('/admin/login')], then we would have to change everywhere where it is used.

Named routes are created using as array key

or using method name

Generate URL using named route

To generate a url using the route's name

Route::all('login', 'LoginController@index');

https://riptutorial.com/ 157

$redirect = Redirect::route('loginPage');

Route::get('profile/{id?}', ['as' => 'viewProfile', 'uses' => 'ProfileController@view']);

Route::get('profile/{id}', ['as' => 'viewProfile', 'uses' => 'ProfileController@view']);

public function view($id){ echo $id;

}

Route::any('{catchall}', 'CatchAllController@handle')->where('catchall', '.*');

If you are using the route name for redirection

Route Parameters

You can use route parameters to get the part of the URI segment. You can define a optional or

required route parameter/s while creating a route. Optional parameters have a ? appended at the

end of the parameter name. This name is enclosed in a curly braces {}

Optional Parameter

This route can be accessed by domain.com/profile/23 where 23 is the id parameter. In this example the id

is passed as a parameter in view method of ProfileController. Since this is a optional parameter accessing

domain.com/profile works just fine.

Required Parameter

Note that required parameter's name doesn't have a ? at the end of the parameter name.

Accessing the parameter in controller

In your controller, your view method takes a parameter with the same name as the one in the

routes.php and can be used like a normal variable. Laravel takes care of injecting the value:

Catch all routes

If you want to catch all routes, then you could use a regular expression as shown:

Important: If you have other routes and you don't want for the catch-all to interfere, you should

put it in the end. For example:

$url = route('loginPage');

https://riptutorial.com/ 158

Route::get('login', 'AuthController@login');

Route::get('logout', 'AuthController@logout'); Route::get('home',

 'HomeController@home');

// The catch-all will match anything except the previous defined routes. Route::any('{catchall}',

'CatchAllController@handle')->where('catchall', '.*');

Route::get('/posts/{postId}/comments/{commentId}', 'CommentController@show'); Route::get('/posts/{postId}',

'PostController@show');

Route::get('/posts/{postId}', 'PostController@show'); Route::get('/posts/{postId}/comments/{commentId}',

'CommentController@show');

Route::get('login', ...);

Catching all routes except already defined

Routes are matched in the order they are declared

This is a common gotcha with Laravel routes. Routes are matched in the order that they are

declared. The first matching route is the one that is used.

This example will work as expected:

A get request to /posts/1/comments/1 will invoke CommentController@show. A get request to /posts/1

will invoke PostController@show.

However, this example will not work in the same manner:

A get request to /posts/1/comments/1 will invoke PostController@show. A get request to /posts/1 will invoke

PostController@show.

Because Laravel uses the first matched route, the request to /posts/1/comments/1 matches

Route::get('/posts/{postId}', 'PostController@show'); and assigns the variable $postId to the value 1/comments/1. This

means that CommentController@show will never be invoked.

Case-insensitive routes

Routes in Laravel are case-sensitive. It means that a route like

will match a GET request to /login but will not match a GET request to /Login.

In order to make your routes case-insensitive, you need to create a new validator class that will

match requested URLs against defined routes. The only difference between the new validator and

the existing one is that it will append the i modifier at the end of regular expression for the

compiled route to switch enable case-insensitive matching.

https://riptutorial.com/ 159

<?php

use Illuminate\Routing\Route as IlluminateRoute; use

Your\Namespace\CaseInsensitiveUriValidator; use

Illuminate\Routing\Matching\UriValidator;

$validators = IlluminateRoute::getValidators();

$validators[] = new CaseInsensitiveUriValidator;

IlluminateRoute::$validators = array_filter($validators, function($validator) { return get_class($validator) !=

UriValidator::class;

});

In order for Laravel to use your new validator, you need to update the list of matchers that are

used to match URL to a route and replace the original UriValidator with yours.

In order to do that, add the following at the top of your routes.php file:

This will remove the original validator and add yours to the list of validators.

Read Routing online: https://riptutorial.com/laravel/topic/1284/routing

<?php namespace Some\Namespace;

use Illuminate\Http\Request; use

Illuminate\Routing\Route;

use Illuminate\Routing\Matching\ValidatorInterface;

class CaseInsensitiveUriValidator implements ValidatorInterface

{

public function matches(Route $route, Request $request)

{

$path = $request->path() == '/' ? '/' : '/'.$request->path();

return preg_match(preg_replace('/$/','i', $route->getCompiled()->getRegex()), rawurldecode($path));

}

}

https://riptutorial.com/laravel/topic/1284/routing

https://riptutorial.com/ 160

php artisan db:seed

php artisan db:seed --class=TestSeederClass

public function run()

{

DB::table('users')

->insert([

'name' => 'Taylor', 'age'

 => 21

]);

}

public function run()

{

$user = new User;

$user->name = 'Taylor';

$user->save();

}

Chapter 54: Seeding

Remarks

Database seeding allows you to insert data, general test data into your database. By default there

is a DatabaseSeeder class under database/seeds.

Running seeders can be done with

Or if you only want to process a single class

As with all artisan commands, you have access to a wide array of methods which can be found in

the api documentation

Examples

Inserting data

There are several ways to insert data:

Using the DB Facade

Via Instantiating a Model

Using the create method

https://laravel.com/api/5.3/Illuminate/Console/Command.html

https://riptutorial.com/ 161

public function run()

{

factory(App\User::class, 10)->create();

}

public function run()

{

DB::table('users')->delete();

DB::unprepared('ALTER TABLE users AUTO_INCREMENT=1;');

factory(App\User::class, 200)->create();

}

$this->call(TestSeeder::class)

$ php artisan make:seeder MoviesTableSeeder

<?php

use Illuminate\Database\Seeder;

Using factory

Seeding && deleting old data and reseting auto-increment

See the Persisting example for more information on inserting/updating data.

Calling other seeders

Within your DatabaseSeeder class you are able to call other seeders

This allows you to keep one file where you can easily find your seeders. Keep in mind that you

need to pay attention to the order of your calls regarding foreign key constraints. You can't

reference a table that doesn't exist yet.

Creating a Seeder

To create seeders, you may use the make:seeder Artisan command. All seeders generated will be

placed in the database/seeds directory.

Generated seeders will contain one method: run. You may insert data into your database in this

method.

public function run()

{

User::create([

'name' => 'Taylor', 'age'

 => 21

]);

}

http://www.riptutorial.com/laravel/example/4094/persisting

https://riptutorial.com/ 162

$ php artisan db:seed

$ php artisan db:seed --class=UserSeeder

$ php artisan migrate:refresh --seed

$ php artisan migrate:reset

$ php artisan migrate

$ php artisan db:seed

rollback all migrations # run

migrations

run seeders

EmployeeType::firstOrCreate(['type' =>

'manager',

]);

You will generally want to call all your seeders inside the DatabaseSeeder class.

Once you're done writing the seeders, use the db:seed command. This will run DatabaseSeeder's run

function.

You may also specify to run a specific seeder class to run individually using the --class option.

If you want to rollback and rerun all migrations, and then reseed:

The migrate:refresh --seed command is a shortcut to these 3 commands:

Safe reseeding

You may want to re-seed your database without affecting your previously created seeds. For this

purpose, you can use firstOrCreate in your seeder:

use Illuminate\Database\Eloquent\Model;

class MoviesTableSeeder extends Seeder

{

/**

* Run the database seeds.

*

* @return void

*/

public function run()

{

App\Movie::create([

'name' => 'A New Hope', 'year' =>

'1977'

]);

App\Movie::create([

'name' => 'The Empire Strikes Back', 'year' => '1980'

]);

}

}

http://www.riptutorial.com/laravel/example/11241/calling-other-seeders
http://www.riptutorial.com/laravel/example/11241/calling-other-seeders
http://www.riptutorial.com/laravel/example/11241/calling-other-seeders
https://laravel.com/api/5.2/Illuminate/Database/Eloquent/Builder.html#method_firstOrCreate

https://riptutorial.com/ 163

php artisan db:seed

EmployeeType::firstOrCreate(['type' =>

'manager',

]);

EmployeeType::firstOrCreate(['type' =>

'secretary',

]);

php artisan db:seed

Then you can seed the database:

Later, if you want to add another type of employee, you can just add that new one in the same file:

And seed your database again with no problems:

Notice in the first call you are retrieving the record but doing nothing with it.

Read Seeding online: https://riptutorial.com/laravel/topic/3272/seeding

https://riptutorial.com/laravel/topic/3272/seeding

https://riptutorial.com/ 164

class SomeController extends Controller {

public function getRandomNumber()

{

return app(OurService::class)->getNumber();

}

}

app/Services/OurService/OurService.php

<?php

namespace App\Services\OurService;

class OurService

{

public function getNumber()

{

return rand();

}

}

class SomeController extends Controller {

public function getRandomNumber()

{

$service = new OurService(); return $service-

>getNumber();

}

public function getOtherRandomNumber()

{

$service = new OurService(); return

$service->getNumber();

}

}

Chapter 55: Services

Examples

Introduction

Laravel allows access to a variety of classes called Services. Some services are available out of

the box, but you can create them by yourself.

A service can be used in multiple files of the application, like controllers. Let's imagine a Service

OurService implementing a getNumber() method returning a random number:

To create a Service, it is only needed to create a new Class:

At this time, you could already use this service in a controller, but you would need to instantiate a

new object each time you would need it:

https://riptutorial.com/ 165

app/Services/OurService/OurServiceServiceProvider.php

<?php

namespace App\Services\OurService;

use Illuminate\Support\ServiceProvider;

class OurServiceServiceProvider extends ServiceProvider

{

public function register()

{

$this->app->singleton('OurService', function($app) { return new

OurService();

});

}

}

return [

...

'providers' => [

...

App\Services\OurService\OurServiceServiceProvider::class,

...

],

...

];

That is why the next step is to register your service into the Service Container. When you register

you Service into the Service Container, you don't need to create a new object every time you need

it.

To register a Service into the Service Container, you need to create a Service Provider. This

Service Provider can:

1. Register your Service into the Service Container with the register method)

2. Injecting other Services into your Service (dependencies) with the boot method

A Service Provider is a class extending the abstract class Illuminate\Support\ServiceProvider. It needs to

implement the register() method to register a Service into the Service Container:

All the Service Providers are saved in an array in config/app.php. So we need to register our

Service Provider into this array:

We can now access our Service in a controller. Three possibilities:

1. Dependency Injection:

https://riptutorial.com/ 166

<?php

namespace App\Http\Controllers;

use App\Services\OurService\OurService; class

SomeController extends Controller

{

public function getRandomNumber()

{

return app('OurService')->getNumber();

}

}

<?php

namespace App\Http\Controllers; use

Randomisator;

class SomeController extends Controller

{

public function getRandomNumber()

{

return Randomisator::getNumber();

}

}

app/Services/OurService/OurServiceFacade.php

<?php

namespace App\Services\OurService;

use Illuminate\Support\Facades\Facade;

2. Access via the app() helper:

Laravel provides Facades, imaginary classes that you can use in all of your projects and reflect a

Service. To access your service more easily, you can create a Facade:

To create a new Facade, you need to create a new Class extending Illuminate\Support\Facades\Facade. This

class needs to implement the getFacadeAccessor() method and return the name of a service registered by

a Service Provider:

<?php

namespace App\Http\Controllers;

use App\Services\OurService\OurService; class

SomeController extends Controller

{

public function construct(OurService $our_service)

{

dd($our_service->getNumber());

}

}

https://riptutorial.com/ 167

return [

...

'aliases' => [

....

'Randomisator' => App\Services\OurService\OurServiceFacade::class,

],

];

app/Services/OurService/helpers.php

if (! function_exists('randomisator')) {

/**

* Get the available OurService instance.

*

* @return \App\ElMatella\FacebookLaravelSdk

*/

function randomisator()

{

return app('OurService');

}

}

{

...

"autoload": {

"files": [

"app/Services/OurService/helpers.php"

],

...

}

You also need to register your Facade into config/app.php:

The Facade is now accessible anywhere in your project.

If you want to access your service from your views, you can create a helper function. Laravel ships

with some helpers function out of the box, like the auth() function or the view() function. To create a

helper function, create a new file:

You also need to register this file, but in your composer.json file:

class OurServiceFacade extends Facade

{

protected static function getFacadeAccessor()

{

return 'OurService';

}

}

https://riptutorial.com/ 168

<h1>Here is a random number: {{ randomisator()->getNumber() }}</h1>

You can now use this helper in a view:

Read Services online: https://riptutorial.com/laravel/topic/1907/services

}

https://riptutorial.com/laravel/topic/1907/services

https://riptutorial.com/ 169

public function register()

{

App::bind(UserRepositoryInterface::class, EloquentUserRepository::class);

}

//this will get back an instance of EloquentUserRepository

$repo = App::make(UserRepositoryInterface:class);

// Create an instance.

$john = new User('John');

// Bind it to the service container.

App::instance('the-user', $john);

// ...somewhere and/or in another class...

// Get back the instance

$john = App::make('the-user');

public function register()

{

App::singleton('my-database', function()

{

return new Database();

});

}

Chapter 56: Services

Examples

Binding an Interface To Implementation

In a Service Provider register method we can bind an interface to an implementation:

From now on, everytime the app will need an instance of UserRepositoryInterface, Laravel will auto inject

a new instance of EloquentUserRepository :

Binding an Instance

We can use the Service Container as a Registry by binding an instance of an object in it and get it

back when we'll need it:

Binding a Singleton to the Service Container

We can bind a class as a Singleton:

This way, the first time an instance of 'my-database' will be requested to the service container, a new

instance will be created. All the successive requests of this class will get back the first created

https://riptutorial.com/ 170

//a new instance of Database is created

$db = App::make('my-database');

//the same instance created before is returned

$anotherDb = App::make('my-database');

App:bind('pdf-creator', function($app) {

// Get the needed dependencies from the service container.

$pdfRender = $app->make('pdf-render');

$templateManager = $app->make('template-manager');

// Create the instance passing the needed dependencies. return new PdfCreator(

$pdfRender, $templateManager);

});

$pdfCreator = App::make('pdf-creator');

instance:

Introduction

The Service Container is the main Application object. It can be used as a Dependency Injection

Container, and a Registry for the application by defining bindings in the Service Providers

Service Providers are classes where we define the way our service classes will be created

through the application, bootstrap their configuration, and bind interfaces to implementations

Services are classes that wrap one or more logic correlated tasks together

Using the Service Container as a Dependency Injection Container

We can use the Service Container as a Dependency Injection Container by binding the creation

process of objects with their dependencies in one point of the application

Let's suppose that the creation of a PdfCreator needs two objects as dependencies; every time we

need to build an instance of PdfCreator, we should pass these dependencies to che constructor.

By using the Service Container as DIC, we define the creation of PdfCreator in the binding definition,

taking the required dependency directly from the Service Container:

Then, in every point of our app, to get a new PdfCreator, we can simply do:

And the Service container will create a new instance, along with the needed dependencies for us.

Read Services online: https://riptutorial.com/laravel/topic/1908/services

https://riptutorial.com/laravel/topic/1908/services

https://riptutorial.com/ 171

composer require laravel/socialite

'facebook' => [

'client_id' => 'your-facebook-app-id', 'client_secret' => 'your-

facebook-app-secret', 'redirect' => 'http://your-callback-url',

],

'providers' => [

...

Laravel\Socialite\SocialiteServiceProvider::class,

]

'aliases' => [

....

'Socialite' => Laravel\Socialite\Facades\Socialite::class,

]

return Socialite::driver('facebook')->redirect();

<?php

Chapter 57: Socialite

Examples

Installation

This installation assumes you're using Composer for managing your dependencies with Laravel,

which is a great way to deal with it.

Configuration

In your config\services.php you can add the following code

You'll also need to add the Provider to your config\app.php

Look for 'providers' => [] array and, at the end of it, add the following

A Facade is also provided with the package. If you would like to make usage of it make sure that

the aliases array (also in your config\app.php) has the following code

Basic Usage - Facade

This will redirect an incoming request to the appropriate URL to be authenticated. A basic example

would be in a controller

http://it-should-link-to-composer-tag-in-the-docs/

https://riptutorial.com/ 172

Route::get('facebook', 'App\Http\Controllers\Auth\AuthenticationController@facebook');

/**

* LoginController constructor.

* @param Socialite $socialite

*/

public function construct(Socialite $socialite) {

$this->socialite = $socialite;

}

/**

* Redirects the User to the Facebook page to get authorization.

*

* @return Response

*/

public function facebook() {

return $this->socialite->driver('facebook')->redirect();

}

public function facebook() {

return $this->socialite->driver('facebook')->stateless()->redirect()->getTargetUrl();

}

make sure your app\Http\routes.php file has a route to allow an incoming request here.

Basic Usage - Dependency Injection

Within the constructor of your Controller, you're now able to inject the Socialite class that will help you

handle login with social networks. This will replace the usage of the Facade.

Socialite for API - Stateless

This will return the URL that the consumer of the API must provide to the end user to get

authorization from Facebook.

namespace App\Http\Controllers\Auth; use

Socialite;

class AuthenticationController extends Controller {

/**

* Redirects the User to the Facebook page to get authorization.

*

* @return Response

*/

public function facebook() {

return Socialite::driver('facebook')->redirect();

}

}

https://riptutorial.com/ 173

Read Socialite online: https://riptutorial.com/laravel/topic/1312/socialite

https://riptutorial.com/laravel/topic/1312/socialite

https://riptutorial.com/ 174

Chapter 58: Sparkpost integration with

Laravel 5.4

Introduction

Laravel 5.4 comes preinstalled with sparkpost api lib. Sparkpost lib requires secret key which one

can find from their sparkpost account.

Examples

SAMPLE .env file data

To successfully create a sparkpost email api setup, add the below details to env file and your

application will be good to start sending emails.

MAIL_DRIVER=sparkpost

SPARKPOST_SECRET=

NOTE: The above details does not give you the code written in controller which has the business

logic to send emails using laravels Mail::send function.

Read Sparkpost integration with Laravel 5.4 online:

https://riptutorial.com/laravel/topic/10136/sparkpost-integration-with-laravel-5-4

https://riptutorial.com/laravel/topic/10136/sparkpost-integration-with-laravel-5-4

https://riptutorial.com/ 175

php artisan make:console MyTaskName

<?php

namespace App\Console\Commands; use

Illuminate\Console\Command; class

MyTaskName extends Command

{

/**

* The name and signature of the console command.

*

* @var string

*/

protected $signature = 'command:name';

/**

* The console command description.

*

* @var string

*/

protected $description = 'Command description';

/**

* Create a new command instance.

*

* @return void

*/

public function construct()

{

parent:: construct();

}

/**

* Execute the console command.

*

* @return mixed

*/

public function handle()

{

//

}

}

Chapter 59: Task Scheduling

Examples

Creating a task

You can create a task (Console Command) in Laravel using Artisan. From your command line:

This creates the file in app/Console/Commands/MyTaskName.php. It will look like this:

https://riptutorial.com/ 176

<?php

namespace App\Console;

use Illuminate\Console\Scheduling\Schedule;

use Illuminate\Foundation\Console\Kernel as ConsoleKernel;

class Kernel extends ConsoleKernel

{

/**

* The Artisan commands provided by your application.

*

* @var array

*/

protected $commands = [

Commands\Inspire::class,

Commands\MyTaskName::class // This line makes MyTaskName available

];

/**

* Define the application's command schedule.

*

* @param \Illuminate\Console\Scheduling\Schedule $schedule

* @return void

*/

protected function schedule(Schedule $schedule)

{

}

}

Some important parts of this definition are:

• The $signature property is what identifies your command. You will be able to execute this

command later through the command line using Artisan by running php artisan command:name

(Where command:name matches your command's $signature)

• The $description property is Artisan's help/usage displays next to your command when it is

made available.

• The handle() method is where you write the code for your command.

Eventually, your task will be made available to the command line through Artisan. The protected

$signature = 'command:name'; property on this class is what you would use to run it.

Making a task available

You can make a task available to Artisan and to your application in the app/Console/Kernel.php

file.

The Kernel class contains an array named $commands which make your commands available to your

application.

Add your command to this array, in order to make it available to Artisan and your application.

Once this is done, you can now access your command via the command line, using Artisan.

Assuming that your command has the $signature property set to my:task, you can run the following

https://riptutorial.com/ 177

php artisan my:task

<?php

namespace App\Console;

use Illuminate\Console\Scheduling\Schedule;

use Illuminate\Foundation\Console\Kernel as ConsoleKernel;

class Kernel extends ConsoleKernel

{

/**

* The Artisan commands provided by your application.

*

* @var array

*/

protected $commands = [

Commands\Inspire::class,

Commands\MyTaskName::class

];

/**

* Define the application's command schedule.

*

* @param \Illuminate\Console\Scheduling\Schedule $schedule

* @return void

*/

protected function schedule(Schedule $schedule)

{

$schedule->command('my:task')->everyMinute();

// $schedule->command('my:task')->everyFiveMinutes();

// $schedule->command('my:task')->daily();

// $schedule->command('my:task')->monthly();

// $schedule->command('my:task')->sundays();

}

}

command to execute your task:

Scheduling your task

When your command is made available to your application, you can use Laravel to schedule it to

run at pre-defined intervals, just like you would a CRON.

In The app/Console/Kernel.php file you will find a schedule method that you can use to schedule your

task.

Assuming your task's $signature is my:task you can schedule it as shown above, using the Schedule

$schedule object. Laravel provides loads of different ways to schedule your command, as shown in the

commented out lines above.

Setting the scheduler to run

The scheduler can be run using the command:

https://riptutorial.com/ 178

* * * * * php /path/to/artisan schedule:run >> /dev/null 2>&1

The scheduler needs to be run every minute in order to work correctly. You can set this up by

creating a cron job with the following line, which runs the scheduler every minute in the

background.

Read Task Scheduling online: https://riptutorial.com/laravel/topic/4026/task-scheduling

php artisan schedule:run

https://riptutorial.com/laravel/topic/4026/task-scheduling

https://riptutorial.com/ 179

<?php

use Illuminate\Foundation\Testing\WithoutMiddleware; use

Illuminate\Foundation\Testing\DatabaseMigrations; use

Illuminate\Foundation\Testing\DatabaseTransactions;

class ExampleTest extends TestCase

{

/**

* A basic functional test example.

*

* @return void

*/

public function testBasicExample()

{

$this->visit('/')

->see('Laravel 5');

}

}

<?php

use Illuminate\Foundation\Testing\WithoutMiddleware; use

Illuminate\Foundation\Testing\DatabaseMigrations;

class ExampleTest extends TestCase

{

Chapter 60: Testing

Examples

Introduction

Writing testable code is an important part of building a robust, maintainable, and agile project.

Support for PHP's most widely used testing framework, PHPUnit, is built right into Laravel.

PHPUnit is configured using the phpunit.xml file, which resides in the root directory of every new

Laravel application.

The tests directory, also in the root directory, contains the individual testing files which hold the

logic for testing each portion of your application. Of course, it is your responsibility as a developer

to write these tests as you build your application, but Laravel includes an example file,

ExampleTest.php, to get you going.

In the testBasicExample() method, we visit the site's index page and make sure we see the text

Laravel 5 somewhere on that page. If the text is not present, the test will fail and generate an error.

Test without middleware and with a fresh database

To make artisan migrate a fresh database before running tests, use DatabaseMigrations. Also if you want

to avoid middleware like Auth, use WithoutMiddleware.

https://phpunit.de/

https://riptutorial.com/ 180

use Illuminate\Foundation\Testing\DatabaseMigrations;

class ExampleTest extends TestCase

{

use DatabaseTransactions;

$connectionsToTransact =["mysql","sqlite"] //tell Laravel which database need to rollBack public function testExampleIndex()

{

$this->visit('/action/parameter')

->see('items');

}

}

'connections' => [

'sqlite_testing' => ['driver' => 'sqlite',

'database' => ':memory:',

'prefix' => '',

],

.

.

.

.

.

Database transactions for mutliple database connection

DatabaseTransactions trait allows databases to rollback all the change during the tests. If you want to

rollback multiple databases , you need to set $connectionsToTransact properties

Testing setup, using in memory database

Following setup ensures that testing framework (PHPUnit) uses :memory: database.

config/database.php

./phpunit.xml

use DatabaseMigrations, WithoutMiddleware;

/**

* A basic functional test example.

*

* @return void

*/

public function testExampleIndex()

{

$this->visit('/protected-page')

->see('All good');

}

}

https://riptutorial.com/ 181

<env name="DB_HOST" value="192.168.10.10"/>

<env name="DB_DATABASE" value="homestead"/>

<env name="DB_USERNAME" value="homestead"/>

<env name="DB_PASSWORD" value="secret"/>

<env name="DB_CONNECTION" value="sqlite"/>

<env name="DB_DATABASE" value=":memory:"/>

Configuration

The phpunit.xml file is the default configuration file for tests and is already setup for testing with

PHPUnit.

The default testing environment APP_ENV is defined as testing with array being the cache driver

CACHE_DRIVER. With this setup, no data (session/cache) will be retained while testing.

To run tests against a specific environment like homestead the defaults can be changed to:

Or to use a temporary in memory database:

One last note to keep in mind from the Laravel documentation:

Make sure to clear your configuration cache using the config:clear Artisan command

before running your tests!

Read Testing online: https://riptutorial.com/laravel/topic/1249/testing

.

</filter>

<php>

<env name="APP_ENV" value="testing"/>

<env name="APP_URL" value="http://example.dev"/>

<env name="CACHE_DRIVER" value="array"/>

<env name="SESSION_DRIVER" value="array"/>

<env name="QUEUE_DRIVER" value="sync"/>

<env name="DB_CONNECTION" value="sqlite_testing"/>

</php>

</phpunit>

https://github.com/laravel/laravel/blob/master/phpunit.xml
https://laravel.com/docs/master/testing
https://riptutorial.com/laravel/topic/1249/testing
http://example.dev/

https://riptutorial.com/ 182

<meta name="csrf-token" content="{{csrf_token()}}">

$.ajaxSetup({

headers: {

'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')

}

});

{{csrf_field()}}

Chapter 61: Token Mismatch Error in AJAX

Introduction

I have analyzed that ratio of getting TokenMismatch Error is very high. And this error occurs

because of some silly mistakes. There are many reasons where developers are making mistakes.

Here are some of the examples i.e No _token on headers, No _token passed data when using

Ajax, permission issue on storage path, an invalid session storage path.

Examples

Setup Token on Header

Set the token on <head> of your default.blade.php.

Add ajaxSetup on the top of your script, that will be accessible to everywhere. This will set headers on

each ajax call

Set token on

tag

Add below function to your <form> tag. This function will generate a hidden field named _token and filled

value with the token.

Add csrf_token () function to your hidden _token in the value attribute. This will generate only encrypted

string.

<input type="hidden" name="_token" value="{{csrf_token()}}"/>.

Check session storage path & permission

Here I assume that project app url is APP_URL=http://project.dev/ts/toys-store

1. Set the writable permission to storage_path('framework/sessions') the folder.

2. Check the path of your laravel project 'path' => '/ts/toys-store', the root of your laravel

http://project.dev/ts/toys-store

https://riptutorial.com/ 183

return [

'driver' => env('SESSION_DRIVER', 'file'), 'lifetime' => 120,

'expire_on_close' => false, 'encrypt' =>

false,

'files' => storage_path('framework/sessions'), 'connection' => null,

'table' => 'sessions', 'lottery' => [2, 100],

'cookie' => 'toys-store', 'path' =>

'/ts/toys-store', 'domain' => null,

'secure' => false, 'http_only'

=> true,

];

$.ajax({

url: $("#category-add").attr("action"), type: "POST",

data: formData,

processData: false,

contentType: false,

dataType: "json", headers: {

'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')

}

});

project.

3. Change the name of your cookie 'cookie' => 'toys-store',

Use _token field on Ajax

There are many ways to send _token on AJAX call

1. Get all input field's value within <form> tag using var formData = new FormData($("#cart- add")[0]);

2. Use $("form").serialize(); or $("form").serializeArray();

3. Add _token manually on data of Ajax. using $('meta[name="csrf-token"]').attr('content') or

$('input[name="_token"]').val().

4. We can set as header on a particular Ajax call like below code.

Read Token Mismatch Error in AJAX online: https://riptutorial.com/laravel/topic/10656/token-

mismatch-error-in-ajax

https://riptutorial.com/laravel/topic/10656/token-mismatch-error-in-ajax
https://riptutorial.com/laravel/topic/10656/token-mismatch-error-in-ajax

https://riptutorial.com/ 184

Chapter 62: use fields aliases in Eloquent

Read use fields aliases in Eloquent online: https://riptutorial.com/laravel/topic/7927/use-fields-

aliases-in-eloquent

https://riptutorial.com/laravel/topic/7927/use-fields-aliases-in-eloquent
https://riptutorial.com/laravel/topic/7927/use-fields-aliases-in-eloquent

https://riptutorial.com/ 185

Chapter 63: Useful links

Introduction

In this topic, you can find useful links to improve your Laravel skills or extend your knowledge.

Examples

Laravel Ecosystem

• Laravel Scout - Laravel Scout provides a simple, driver-based solution for adding full-text

search to your Eloquent models.

• Laravel Passport - API authentication without a headache. Passport is an OAuth2 server

that's ready in minutes.

• Homestead - The official Laravel development environment. Powered by Vagrant,

Homestead gets your entire team on the same page with the latest PHP, MySQL, Postgres,

Redis, and more.

• Laravel Cashier - Make subscription billing painless with built-in Stripe and Braintree

integrations. Coupons, swapping subscriptions, cancellations, and even PDF invoices are

ready out of the box.

• Forge - Provision and deploy unlimited PHP applications on DigitalOcean, Linode, & AWS.

• Envoyer - Zero Downtime PHP Deployment.

• Valet - A Laravel development environment for Mac minimalists. No Vagrant, no Apache, no

fuss.

• Spark - Powerful SaaS application scaffolding. Stop writing boilerplate & focus on your

application.

• Lumen - If all you need is an API and lightning fast speed, try Lumen. It’s Laravel super-light.

• Statamic - A true CMS designed to make agencies profitable, developers happy, and clients

hug you.

Education

• Laracasts - Learn practical, modern web development, through expert screencasts.

• Laravel News - Stay up to date with Laravel with Laravel News.

• Laravel.io - Forum with open-source code.

Podcasts

• Laravel News Podcasts

• The Laravel Podcasts

Read Useful links online: https://riptutorial.com/laravel/topic/9957/useful-links

https://laravel.com/docs/5.4/scout
https://laravel.com/docs/5.4/passport
https://laravel.com/docs/5.4/homestead
https://laravel.com/docs/billing
https://forge.laravel.com/
https://envoyer.io/
https://laravel.com/docs/valet
https://spark.laravel.com/
https://lumen.laravel.com/
https://statamic.com/
https://laracasts.com/
https://laravel-news.com/
https://laravel.io/forum
https://laravel-news.com/curated-list-of-geek-podcasts
http://www.laravelpodcast.com/
https://riptutorial.com/laravel/topic/9957/useful-links

https://riptutorial.com/ 186

domain, fetch-share-url, forget, help, install, link, links, list, logs, on-latest-

command version, open, park, paths, restart, secure, start, stop, uninstall, unlink,

unsecure, which

options
-h, --help, -q, --quiet, -V, --version, --ansi, --no-ansi, -n, --no-interaction, -v, -vv, -

vvv,--verbose

arguments (optional)

Parameter Values Set

cd ~/Projects/my-blog/ valet link

awesome-blog

Chapter 64: Valet

Introduction

Valet is a development environment tailor made for macOS. It abstracts away the need for virtual

machines, Homestead, or Vagrant. No need to constantly update your /etc/hosts file anymore.

You can even share your sites publicly using local tunnels.

Laravel Valet makes all sites available on a *.dev domain by binding folder names to domain names.

Syntax

• valet command [options] [arguments]

Parameters

Remarks

Because Valet for Linux and Windows are unofficial, there will not be support outside of their

respective Github repositories.

Examples

Valet link

This command is useful if you want to serve a single site in a directory and not the entire directory.

Valet will create a symbolic link in ~/.valet/Sites which points to your current working directory.

http://www.riptutorial.com/laravel/example/30726/valet-domain
http://www.riptutorial.com/laravel/example/6218/valet-link
http://www.riptutorial.com/laravel/example/7537/valet-links
http://www.riptutorial.com/laravel/example/6219/valet-park

https://riptutorial.com/ 187

cd ~/Projects valet

park

valet links

...

site1 -> /path/to/site/one site2 ->

/path/to/site/two

...

After running the link command, you can access the site in your browser at http://awesome-

blog.dev.

To see a listing of all of your linked directories, run the valet links command. You may use valet

unlink awesome-blog to destroy the symbolic link.

Valet park

This command will register your current working directory as a path that Valet should search for

sites. Now, any Laravel project you create within your "parked" directory will automatically be

served using the http://folder-name.dev convention.

Valet links

This command will display all the registered Valet links you have created and their corresponding

file paths on your computer.

Command:

Sample Output:

Note 1: You can run this command from anywhere not just from within a linked folder.

Note 2: Sites will be listed without the ending .dev but you'll still use site1.dev to access your

application from the browser.

Installation

IMPORTANT!! Valet is a tool designed for macOS only.

Prerequisites

• Valet utilizes your local machine's HTTP port (port 80), therefore, you will not be able to use

if Apache or Nginx are installed and running on the same machine.

• macOS' unofficial package manager Homebrew is required to properly use Valet.

• Make sure Homebrew is updated to the latest version by running brew update in the terminal.

Installation

http://awesome-/
http://www.riptutorial.com/laravel/example/7537/valet-links
http://folder-name.dev/
https://brew.sh/

https://riptutorial.com/ 188

$ valet domain

> dev

$ valet domain local

> Your Valet domain has been updated to [local].

• Install PHP 7.1 using Homebrew via brew install homebrew/php/php71.

• Install Valet with Composer via composer global require laravel/valet.

• Append ~/.composer/vendor/bin directory to your system's "PATH" if it is not already there.

• Run the valet install command.

Post Install During the installation process, Valet installed DnsMasq. It also registered Valet's

daemon to automatically launch when your system starts, so you don't need to run valet start or valet

install every time you reboot your machine.

Valet domain

This command allows you to change or view the TLD (top-level domain) used to bind domains to

your local machine.

Get The Current TLD

Set the TLD

Installation (Linux)

IMPORTANT!! Valet is a tool designed for macOS, the version below is ported for Linux OS.

Prerequisites

• Do not install valet as root or by using the sudo command.

• Valet utilizes your local machine's HTTP port (port 80), therefore, you will not be able to use

if Apache or Nginx are installed and running on the same machine.

• An up to date version of composer is required to install and run Valet.

Installation

• Run composer global require cpriego/valet-linux to install Valet globally.

• Run the valet install command to finish the installation.

Post Install

During the installation process, Valet installed DnsMasq. It also registered Valet's daemon to

automatically launch when your system starts, so you don't need to run valet start or valet install

every time you reboot your machine.

The Official Documentation can be found here.

Read Valet online: https://riptutorial.com/laravel/topic/1906/valet

https://github.com/cpriego/valet-linux/wiki
https://riptutorial.com/laravel/topic/1906/valet

https://riptutorial.com/ 189

Chapter 65: Validation

Parameters

Parameter Details

required The field is required

sometimes

Run validation checks against a field only if that field is present in

the input array

email The input is a valid email

max:value The input value should be below the maximum value

unique:db_table_name

The input value should be unique in the provided database table

name

accepted Yes / On / 1 true, useful for checking TOS

active_url Must be a valid URL according to checkdnsrr

after :date Field under validation must provide a value after the given date

alpha The field under validation must be entirely alphabetic characters.

alpha_dash

The field under validation may have alpha-numeric characters, as

well as dashes and underscores.

alpha_num

The field under validation must be entirely alpha-numeric

characters.

array Must be a PHP array

before :date The field must be a value under the given date

between:min,max

The input value should be in between minimum (min) and maximum

(max) value

boolean

The field under validation must be able to be cast as a boolean.

Accepted input are true, false, 1, 0, "1", and "0".

confirmed

The field under validation must have a matching field of

foo_confirmation. For example, if the field under validation is password, a

matching password_confirmation field must be present in the input.

date The field under validation must be a valid date according to the

http://php.net/checkdnsrr
http://php.net/array

https://riptutorial.com/ 190

/**

* @param Request $request

* @return Response

*/

public function store(Request $request) {

$this->validate($request, ['name' =>

'required',

'email' => 'email|unique:users|max:255'

],

// second array of validation messages can be passed here [

'name.required' => 'Please provide a valid name!', 'email.required' => 'Please

provide a valid email!',

]);

// The validation passed

}

Examples

Basic Example

You can validate request data using the validate method (available in the base Controller,

provided by the ValidatesRequests trait).

If the rules pass, your code will keep executing normally; however, if validation fails, an error

response containing the validation errors will automatically be sent back:

• for typical HTML form requests, the user will be redirected to the previous page, with the

form keeping the submitted values

• for requests that expect a JSON response, a HTTP response with code 422 will be

generated

For example, in your UserController, you might be saving a new user in the store method, which would

need validation before saving.

In the example above, we validate that the name field exists with non-empty value. Secondly, we

check that the email field has a valid e-mail format, is unique in the database table "users", and

has maximum length of 255 characters.

The | (pipe) character combines different validation rules for one field.

Sometimes you may wish to stop running validation rules on an attribute after the first validation

failure. To do so, assign the bail rule to the attribute:

strtotime PHP function.

integer The field under validation must be an integer

string The field under validation must be a string type.

Details Parameter

http://php.net/strtotime
http://php.net/manual/en/language.types.integer.php
http://php.net/manual/en/ref.strings.php

https://riptutorial.com/ 191

$validator = \Validator::make($request->all(), ['name.*' => 'required',

'email.*' => 'email|unique:users',

'fatherName.*' => 'required'

]);

if ($validator->fails()) {

return back()->withInput()->withErrors($validator->errors());

}

[

'name.*' => [

'required' => 'Name field is required',

],

'email.*' => [

'unique' => 'Unique Email is required',

],

'fatherName.*' => [

'required' => 'Father Name required',

]

]

$validator = \Validator::make($request->all(), ['name.*' => 'required',

'email.*' => 'email|unique:users',

'fatherName.*' => 'required',

], [

'name.*' => 'Name Required',

'email.*' => 'Unique Email is required',

'fatherName.*' => 'Father Name required',

]);

if ($validator->fails()) {

return back()->withInput()->withErrors($validator->errors());

}

The complete list of available validation rules can be found in the parameters section below.

Array Validation

Validating array form input fields is very simple.

Suppose you have to validate each name, email and father name in a given array. You could do

the following:

Laravel displays default messages for validation. However, if you want custom messages for array

based fields, you can add the following code:

Your final code will look like this:

$this->validate($request, ['name' =>

'bail|required',

'email' => 'email|unique:users|max:255'

]);

http://www.riptutorial.com/laravel/topic/1310/validation

https://riptutorial.com/ 192

php artisan make:request StoreBlogPostRequest

public function authorize()

{

return $this->user()->can('post');

}

public function rules()

{

return [

'title' => 'required|unique:posts|max:255', 'body' => 'required',

];

}

public function messages()

{

return [

'title.required' => 'A title is required',

'title.unique' => 'There is another post with the same title', 'title.max' => 'The title may not

exceed :max characters', 'body.required' => 'A message is required',

];

}

public function store(StoreBlogPostRequest $request)

{

// validation passed

}

Other Validation Approaches

1) Form Request Validation

You may create a "form request" which can hold the authorization logic, validation rules, and error

messages for a particular request in your application.

The make:request Artisan CLI command generates the class and places it in the app/Http/Requests

directory:

The authorize method can be overridden with the authorization logic for this request:

The rules method can be overridden with the specific rules for this request:

The messages method can be overridden with the specific messages for this request:

In order to validate the request, just type-hint the specific request class on the corresponding

controller method. If validation fails, an error response will be sent back.

2) Manually Creating Validators

https://riptutorial.com/ 193

<?php

namespace App\Http\Controllers;

use Validator;

use Illuminate\Http\Request;

use App\Http\Controllers\Controller;

class PostController extends Controller

{

public function store(Request $request)

{

$validator = Validator::make($request->all(), ['title' =>

'required|unique:posts|max:255', 'body' => 'required',

]);

if ($validator->fails()) {

return redirect('post/create')

->withErrors($validator)

->withInput();

}

// Store the blog post...

}

}

<?php

namespace App\Http\Requests;

use Illuminate\Foundation\Http\FormRequest; use

Illuminate\Http\Request;

use Illuminate\Validation\Rule;

class UserRequest extends FormRequest

{

/**

* Determine if the user is authorized to make this request.

*

* @return bool

*/

public function authorize()

{

For more flexibility, you may want to create a Validator manually, and handle the failed validation

directly:

2) Fluently creating rules

Occasionally you might need to create unique rules on the fly, working with the boot() method within

a Service Provider might be over the top, as of Laravel 5.4 you can create new rules fluently by

using the Rule class.

As an example we are going to work with the UserRequest for when you want to insert or update a

user. For now we want a name to be required and the email address must be unique. The problem

with using the unique rule is that if you are editing a user, they might keep the same email, so you

need to exclude the current user from the rule. The following example shows how you can easily

do this by utilising the new Rule class.

https://riptutorial.com/ 194

/**

* Get the validation rules that apply to the request.

*

* @return array

*/

public function rules() { switch($this-

>method()) {

case 'GET':

case 'DELETE':

return [];

case 'POST':

return [

'name' => 'required|max:75|unique', 'category'

=> 'required',

'price' => 'required|between:0,1000',

];

case 'PUT':

case 'PATCH':

return [

'name' => 'required|max:75|unique:product,name,' . $this->product, 'category' => 'required',

'price' => 'required|between:0,1000',

];

default:break;

}

}

Single Form Request Class for POST, PUT, PATCH

Following the 'Form Request Validation' example, the same Request Class can be used for POST,

PUT, PATCH so you do not have to create another class using the same/similar validations. This

comes in handy if you have attributes in your table that are unique.

Starting from the top, our switch statement is going to look at the method type of the request (GET,

return true;

}

/**

* Get the validation rules that apply to the request.

*

* @return array

*/

public function rules(Request $request)

{

$id = $request->route()->getParameter('user'); return [

'name' => 'required',

// Notice the value is an array and not a string like usual 'email' => [

'required',

Rule::unique('users')->ignore($id)

]

];

}

}

http://www.riptutorial.com/laravel/example/9670/other-validation-approaches

https://riptutorial.com/ 195

'field_name' => 'unique:table_name,column_name,' . $idToIgnore`

'field_name' => 'unique:table_name,column_name,' . $idToIgnore . ',primary_key_column'

'required' => 'Please inform your :attribute.',

//... 'attributes => [

'email' => 'E-Mail address'

]

`email' => `required`

DELETE, POST, PUT, PATCH).

Depending on the method will return the array of rules defined. If you have a field that is unique,

such as the name field in the example, you need to specify a particular id for the validation to

ignore.

If you have a primary key labeled something other than id, you will specify the primary key column

as the fourth parameter.

In this example, we are using PUT and passing to the route (admin/products/{product}) the value of the

product id. So $this->product will be equal to the id to ignore.

Now your PUT|PATCH and POST validation rules do not need to be the same. Define your logic that fits

your requirements. This technique allows you to reuse the custom messages you may have

defined within the custom Form Request Class.

Error messages

Customizing error messages

The /resources/lang/[lang]/validation.php files contain the error messages to be used by the validator. You

can edit them as needed.

Most of them have placeholders which will be automatically replaced when generating the error

message.

For example, in 'required' => 'The :attribute field is required.', the :attribute placeholder will be replaced by the

field name (alternatively, you can also customize the display value of each field in the attributes array

in the same file).

Example

message configuration:

rules:

https://riptutorial.com/ 196

class SampleRequest extends Request {

/**

* Get the validation rules that apply to the request.

*

* @return array

*/

public function rules()

{

return [

'image' => 'required|file_exists'

];

}

/**

* Determine if the user is authorized to make this request.

*

* @return bool

*/

public function authorize()

{

return true;

}

public function messages()

{

return [

'image.file_exists' => 'That file no longer exists or is invalid'

];

}

}

@if (count($errors) > 0)

<div class="alert alert-danger">

resulting error message:

"Please inform your E-Mail address."

Customising error messages within a Request class

The Request class has access to a messages() method which should return an array, this can be

used to override messages without having to go into the lang files. For example if we have a

custom file_exists validation you can messages like below.

Displaying error messages

The validation errors are flashed to the session, and are also available in the $errors variable, which

is automatically shared to all views.

Example of displaying the errors in a Blade view:

https://riptutorial.com/ 197

<?php

namespace App\Providers;

use Illuminate\Support\ServiceProvider; use Validator;

class AppServiceProvider extends ServiceProvider

{

public function boot()

{

Validator::extend('starts_with', function($attribute, $value, $parameters, $validator)

{

return \Illuminate\Support\Str::startsWith($value, $parameters[0]);

});

Validator::replacer('starts_with', function($message, $attribute, $rule, $parameters)

{

return str_replace(':needle', $parameters[0], $message);

});

}

}

'starts_with' => 'The :attribute must start with :needle.'

Custom Validation Rules

If you want to create a custom validation rule, you can do so for instance in the boot method of a

service provider, via the Validator facade.

The extend method takes a string which will be the name of the rule and a function which in turn will

be passed the name of the attribute, the value being validated, an array of the rule parameters,

and the validator instance, and should return whether the validation passes. In this example, we

are checking if the value string starts with a given substring.

The error message for this custom rule can be set as usual in the

/resources/lang/[lang]/validation.php file, and can contain placeholders, for instance, for parameters values:

The replacer method takes a string which is the name of the rule and a function which in turn will be

passed the original message (before replacing), the name of the attribute, the name of the rule,

and an array of the rule parameters, and should return the message after replacing the

placeholders as needed.

Use this rule as any other:

@foreach ($errors->all() as $error)

{{ $error }}

@endforeach

</div>

@endif

https://riptutorial.com/ 198

Read Validation online: https://riptutorial.com/laravel/topic/1310/validation

$this->validate($request, [

'phone_number' => 'required|starts_with:+'

]);

https://riptutorial.com/laravel/topic/1310/validation

https://riptutorial.com/ 199

Credits

S.

No

Chapters

Contributors

1

Getting started with

Laravel

alepeino, Alphonsus, boroboris, Colin Herzog, Community, Ed

Rands, Evgeniy Maynagashev, Gaurav, Imam Assidiqqi, James,

Ketan Akbari, Kovah, Lance Pioch, Marek Skiba, Martin Bean,

Misa Lazovic, nyedidikeke, Oliver Adria, Prakash, rap-2-h, Ru

Chern Chong, SeinopSys, Tatranskymedved, Tim

2

Artisan

Alessandro Bassi, Gaurav, Harshal Limaye, Himanshu Raval,

Imam Assidiqqi, Kaspars, Laurel, Rubens Mariuzzo, Safoor

Safdar, Sagar Naliyapara, SeinopSys

3 Authentication Aykut CAN, Imam Assidiqqi

4 Authorization Daniel Verem

5

Blade Templates

A. Raza, agleis, Akshay Khale, alepeino, Alessandro Bassi,

Benubird, cbaconnier, Christophvh, Imam Assidiqqi,

matiaslauriti, Nauman Zafar, rap-2-h, Safoor Safdar, Tosho

Trajanov, yogesh

6 Cashier littleswany, RamenChef

7

Change default

routing behaviour in

Laravel 5.2.31 +

Frank Provost

8

Collections

A. Raza, Alessandro Bassi, Alex Harris, bhill77, caoglish,

Dummy Code, Gras Double, Ian, Imam Assidiqqi, Josh Rumbut,

Karim Geiger, matiaslauriti, Nicklas Kevin Frank, Ozzy, rap-2-h,

simonhamp, Vucko

9

Common Issues &

Quick Fixes

Nauman Zafar

10 Constants Mubashar Iqbal, Oscar David, Zakaria Acharki

11 Controllers Ru Chern Chong

12 Cron basics A. Raza

13

Cross Domain

Request

Imam Assidiqqi, Suraj

14 Custom Helper Ian, Luceos, rap-2-h, Raunak Gupta

https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/5142901/boroboris
https://riptutorial.com/contributor/7538945/colin-herzog
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2330972/ed-rands
https://riptutorial.com/contributor/2330972/ed-rands
https://riptutorial.com/contributor/5852587/evgeniy-maynagashev
https://riptutorial.com/contributor/3113599/gaurav
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/1203515/kovah
https://riptutorial.com/contributor/1167677/lance-pioch
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/102205/martin-bean
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/6381711/nyedidikeke
https://riptutorial.com/contributor/3347365/oliver-adria
https://riptutorial.com/contributor/3477687/prakash
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/7167572/tatranskymedved
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/3113599/gaurav
https://riptutorial.com/contributor/7148982/harshal-limaye
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/2819034/aykut-can
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/5428438/daniel-verem
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6621419/agleis
https://riptutorial.com/contributor/2541634/akshay-khale
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/494643/benubird
https://riptutorial.com/contributor/494643/benubird
https://riptutorial.com/contributor/8068675/cbaconnier
https://riptutorial.com/contributor/3493752/christophvh
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/6469791/yogesh
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2940794/frank-provost
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/3143628/bhill77
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/2379592/dummy-code
https://riptutorial.com/contributor/2379592/dummy-code
https://riptutorial.com/contributor/289317/gras-double
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1594060/josh-rumbut
https://riptutorial.com/contributor/465830/karim-geiger
https://riptutorial.com/contributor/465830/karim-geiger
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/104452/ozzy
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/123696/simonhamp
https://riptutorial.com/contributor/123696/simonhamp
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/3640207/mubashar-iqbal
https://riptutorial.com/contributor/5211514/oscar-david
https://riptutorial.com/contributor/4281779/zakaria-acharki
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/5413785/suraj
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/717181/luceos
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/5019802/raunak-gupta

https://riptutorial.com/ 200

function

15

CustomException

class in Laravel

ashish bansal

16

Database

A. Raza, adam, caoglish, Ian, Iftikhar uddin, Imam Assidiqqi,

liamja, Panagiotis Koursaris, RamenChef, Rubens Mariuzzo,

Sanzeeb Aryal, Vucko

17

Database Migrations

Chris, Chris White, Hovsep, hschin, Iftikhar uddin, Imam

Assidiqqi, Kaspars, liamja, littleswany, mnoronha, Nauman

Zafar, Panagiotis Koursaris, Paulo Freitas, Vucko

18

Database Seeding

Achraf Khouadja, Andrew Nolan, Dan Johnson, Isma, Kyslik,

Marco Aurélio Deleu

19

Deploy Laravel 5

App on Shared

Hosting on Linux

Server

Donkarnash, Gayan, Imam Assidiqqi, Kyslik, PassionInfinite,

Pete Houston, rap-2-h, Ru Chern Chong, Stojan Kukrika,

ultrasamad

20 Directory Structure Kaspars, Moppo, RamenChef

21

Eloquent

aimme, alepeino, Alessandro Bassi, Alex Harris, Alfa,

Alphonsus, andretzermias, andrewtweber, Andrey Lutskevich,

aynber, Buckwheat, Casper Spruit, Dancia, Dipesh Poudel, Ian,

Imam Assidiqqi, James, James, jedrzej.kurylo, John Slegers,

Josh Rumbut, Kaspars, Ketan Akbari, KuKeC, littleswany,

Lykegenes, Maantje, Mahmood, Marco Aurélio Deleu,

marcus.ramsden, Marek Skiba, Martin Bean, matiaslauriti, MM2,

Nicklas Kevin Frank, Niklas Modess, Nyan Lynn Htut, patricus,

Pete Houston, Phroggyy, Prisoner Raju, RamenChef, rap-2-h,

Rubens Mariuzzo, Sagar Naliyapara, Samsquanch, Sergio

Guillen Mantilla, Tim, tkausl, whoan, Yasin Patel

22

Eloquent :

Relationship

Advaith, aimme, Alex Harris, Alphonsus, bhill77, Imam Assidiqqi

, Ketan Akbari, Phroggyy, rap-2-h, Ru Chern Chong, Zulfiqar

Tariq

23

Eloquent: Accessors

& Mutators

Diego Souza, Kyslik

24

Eloquent: Model

Aeolingamenfel, alepeino, Alex Harris, Imam Assidiqqi, John

Slegers, Kaspars, littleswany, Marco Aurélio Deleu,

marcus.ramsden, Marek Skiba, matiaslauriti, Nicklas Kevin

Frank, Samsquanch, Tim

25 Error Handling Isma, Kyslik, RamenChef, Rubens Mariuzzo

https://riptutorial.com/contributor/6531516/ashish-bansal
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/2797224/adam
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/451975/liamja
https://riptutorial.com/contributor/451975/liamja
https://riptutorial.com/contributor/4195561/panagiotis-koursaris
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/5608921/sanzeeb-aryal
https://riptutorial.com/contributor/5608921/sanzeeb-aryal
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/614112/chris
https://riptutorial.com/contributor/5596894/chris-white
https://riptutorial.com/contributor/6626015/hovsep
https://riptutorial.com/contributor/2931685/hschin
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/451975/liamja
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/4195561/panagiotis-koursaris
https://riptutorial.com/contributor/222758/paulo-freitas
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/5960249/achraf-khouadja
https://riptutorial.com/contributor/5729023/andrew-nolan
https://riptutorial.com/contributor/2719424/dan-johnson
https://riptutorial.com/contributor/3231770/isma
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/1220364/donkarnash
https://riptutorial.com/contributor/3918473/gayan
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/4919058/passioninfinite
https://riptutorial.com/contributor/801396/pete-houston
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4393488/stojan-kukrika
https://riptutorial.com/contributor/7235138/ultrasamad
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/3739901/moppo
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1409707/aimme
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/2470753/alfa
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/2992745/andretzermias
https://riptutorial.com/contributor/704803/andrewtweber
https://riptutorial.com/contributor/3894654/andrey-lutskevich
https://riptutorial.com/contributor/1007220/aynber
https://riptutorial.com/contributor/4867275/buckwheat
https://riptutorial.com/contributor/4649882/casper-spruit
https://riptutorial.com/contributor/3565320/dancia
https://riptutorial.com/contributor/5309397/dipesh-poudel
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/394013/james
https://riptutorial.com/contributor/1739852/james
https://riptutorial.com/contributor/1594915/jedrzej-kurylo
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1594060/josh-rumbut
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/5139222/kukec
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/3242099/lykegenes
https://riptutorial.com/contributor/4755215/maantje
https://riptutorial.com/contributor/69232/mahmood
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/425519/marcus-ramsden
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/102205/martin-bean
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/1768257/mm2
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/772791/niklas-modess
https://riptutorial.com/contributor/1223051/nyan-lynn-htut
https://riptutorial.com/contributor/3583182/patricus
https://riptutorial.com/contributor/801396/pete-houston
https://riptutorial.com/contributor/4123267/phroggyy
https://riptutorial.com/contributor/1941091/prisoner-raju
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/485418/samsquanch
https://riptutorial.com/contributor/2280891/sergio-guillen-mantilla
https://riptutorial.com/contributor/2280891/sergio-guillen-mantilla
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/1080064/tkausl
https://riptutorial.com/contributor/4095830/whoan
https://riptutorial.com/contributor/6246818/yasin-patel
https://riptutorial.com/contributor/6349060/advaith
https://riptutorial.com/contributor/1409707/aimme
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/3143628/bhill77
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/4123267/phroggyy
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/2308263/zulfiqar-tariq
https://riptutorial.com/contributor/2308263/zulfiqar-tariq
https://riptutorial.com/contributor/6734718/diego-souza
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/425519/marcus-ramsden
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/485418/samsquanch
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/3231770/isma
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/439427/rubens-mariuzzo

https://riptutorial.com/ 201

26 Events and Listeners Bharat Geleda, matiaslauriti, Nauman Zafar

27

Filesystem / Cloud

Storage

Imam Assidiqqi, Nitish Kumar, Paulo Laxamana

28 Form Request(s) Bookeater, Ian, John Roca, Kyslik, RamenChef

29

Getting started with

laravel-5.3

A. Raza, Advaith, Community, davejal, Deathstorm, Manish,

Matthew Beckman, Robin Dirksen, Shital Jachak

30 Helpers aimme

31

HTML and Form

Builder

alepeino, Casper Spruit, Himanshu Raval, Prakash

32

Installation

A. Raza, alepeino, Alphonsus, Black, boroboris, Gaurav, Imam

Assidiqqi, James, Ketan Akbari, Lance Pioch, Marek Skiba,

Martin Bean, nyedidikeke, PaladiN, Prakash, rap-2-h, Ru Chern

Chong, Sagar Naliyapara, SeinopSys, Tim

33

Installation Guide

Advaith, Amarnasan, aynber, Community, davejal, Dov

Benyomin Sohacheski, Imam Assidiqqi, PaladiN, rap-2-h, Ru

Chern Chong

34

Introduction to

laravel-5.2

A. Raza, ashish bansal, Community, Edward Palen, Ivanka

Todorova, Shubhamoy

35

Introduction to

laravel-5.3

Ian

36 Laravel Docker Dov Benyomin Sohacheski

37

Laravel Packages

Casper Spruit, Imam Assidiqqi, Ketan Akbari, rap-2-h, Ru Chern

Chong, Tosho Trajanov

38 lumen framework maksbd19

39

Macros In Eloquent

Relationship

Alex Casajuana, Vikash

40 Mail Yohanan Baruchel

41 Middleware Alex Harris, Kaspars, Kyslik, Moppo, Pistachio

42

Multiple DB

Connections in

Laravel

4444, A. Raza, Rana Ghosh

43
Naming Files when

uploading with

Donkarnash, RamenChef

https://riptutorial.com/contributor/3516962/bharat-geleda
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/6085328/nitish-kumar
https://riptutorial.com/contributor/4158351/paulo-laxamana
https://riptutorial.com/contributor/6548647/bookeater
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/2392691/john-roca
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6349060/advaith
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3664960/davejal
https://riptutorial.com/contributor/7647266/deathstorm
https://riptutorial.com/contributor/1578402/manish
https://riptutorial.com/contributor/3230030/matthew-beckman
https://riptutorial.com/contributor/3230030/matthew-beckman
https://riptutorial.com/contributor/2859139/robin-dirksen
https://riptutorial.com/contributor/3519150/shital-jachak
https://riptutorial.com/contributor/1409707/aimme
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/4649882/casper-spruit
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/3477687/prakash
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/4684797/black
https://riptutorial.com/contributor/5142901/boroboris
https://riptutorial.com/contributor/3113599/gaurav
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/1167677/lance-pioch
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/102205/martin-bean
https://riptutorial.com/contributor/102205/martin-bean
https://riptutorial.com/contributor/6381711/nyedidikeke
https://riptutorial.com/contributor/3887342/paladin
https://riptutorial.com/contributor/3477687/prakash
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/6349060/advaith
https://riptutorial.com/contributor/1398445/amarnasan
https://riptutorial.com/contributor/1007220/aynber
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3664960/davejal
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/3887342/paladin
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6531516/ashish-bansal
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5390791/edward-palen
https://riptutorial.com/contributor/867418/ivanka-todorova
https://riptutorial.com/contributor/867418/ivanka-todorova
https://riptutorial.com/contributor/867418/ivanka-todorova
https://riptutorial.com/contributor/2365052/shubhamoy
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/4649882/casper-spruit
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/1330083/maksbd19
https://riptutorial.com/contributor/4980018/alex-casajuana
https://riptutorial.com/contributor/3821621/vikash
https://riptutorial.com/contributor/6612690/yohanan-baruchel
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/3739901/moppo
https://riptutorial.com/contributor/5006183/pistachio
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6162401/rana-ghosh
https://riptutorial.com/contributor/1220364/donkarnash
https://riptutorial.com/contributor/6392939/ramenchef

https://riptutorial.com/ 202

Laravel on Windows

44 Observer matiaslauriti, Szenis

45 Pagination Himanshu Raval, Iftikhar uddin

46 Permissions for
storage

A. Raza

47 Policies Tosho Trajanov

48 Queues Alessandro Bassi, Kyslik

49 Remove public from
URL in laravel

A. Raza, Rana Ghosh, ultrasamad

50 Requests Ian, Jerodev, RamenChef, Rubens Mariuzzo

51 Route Model Binding A. Raza, GiuServ, Vikash

52 Routing

A. Raza, alepeino, Alessandro Bassi, Alex Juchem, beznez,

Dwight, Ilker Mutlu, Imam Assidiqqi, jedrzej.kurylo, Kyslik, Milan

Maharjan, Rubens Mariuzzo, SeinopSys, Vucko

53
Seeding

A. Raza, Alphonsus, Ian, Imam Assidiqqi, Kyslik, SupFrost,

whoan

54 Services A. Raza, El_Matella

55 Socialite Jonathon, Marco Aurélio Deleu

56 Sparkpost integration
with Laravel 5.4

Alvin Chettiar

57 Task Scheduling Jonathon

58

Testing
Alessandro Bassi, Brayniverse, caoglish, Julian Minde, Kyslik,

rap-2-h, Sven

59 Token Mismatch
Error in AJAX

60 use fields aliases in

Eloquent

Pankaj Makwana

MM2

61 Useful links Jakub Kratina

62

Valet
David Lartey, Dov Benyomin Sohacheski, Imam Assidiqqi, Misa

Lazovic, Ru Chern Chong, Shog9

63 Validation A. Raza, alepeino, Alessandro Bassi, Alex Harris, Andrew Nolan

https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2761093/szenis
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6162401/rana-ghosh
https://riptutorial.com/contributor/7235138/ultrasamad
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/743016/jerodev
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6875588/giuserv
https://riptutorial.com/contributor/3821621/vikash
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/5161740/alex-juchem
https://riptutorial.com/contributor/3794177/beznez
https://riptutorial.com/contributor/1125910/dwight
https://riptutorial.com/contributor/1125910/dwight
https://riptutorial.com/contributor/1804506/ilker-mutlu
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1594915/jedrzej-kurylo
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/2253892/milan-maharjan
https://riptutorial.com/contributor/2253892/milan-maharjan
https://riptutorial.com/contributor/2253892/milan-maharjan
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/2729470/supfrost
https://riptutorial.com/contributor/4095830/whoan
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4547701/el-matella
https://riptutorial.com/contributor/2244675/jonathon
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/8082582/alvin-chettiar
https://riptutorial.com/contributor/2244675/jonathon
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/2174276/brayniverse
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/4963895/julian-minde
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1815847/sven
https://riptutorial.com/contributor/2613552/pankaj-makwana
https://riptutorial.com/contributor/1768257/mm2
https://riptutorial.com/contributor/2850062/jakub-kratina
https://riptutorial.com/contributor/1818092/david-lartey
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/5729023/andrew-nolan

https://riptutorial.com/ 203

, happyhardik, Himanshu Raval, Ian, Iftikhar uddin, John

Slegers, Marco Aurélio Deleu, matiaslauriti, rap-2-h, Rubens

Mariuzzo, Safoor Safdar, Sagar Naliyapara, Stephen Leppik,

sun, Vucko

https://riptutorial.com/contributor/162223/happyhardik
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6000234/sun
https://riptutorial.com/contributor/5647037/vucko

